WELCOME TO MY BLOG ::

Selamat Datang Sahabat. Semoga kita menjadi saudara sejati, ketika KLIK anda mengantar masuk space ini semoga bukan ruang hampa yang menjenuhkan. Sangat tersanjung anda berkenaan membaca sejenak apapun yang tersaji disini. Sejurus lalu, meninggalkan komentar, kritik atau pesan bijak buat penghuni blog. Ekspresi anda dalam bentuk tulisan adalah ungkapan abstrak banyak keinginan yang ingin kita gapai. So, berekspresilah dengan tulus dan semangat. Mari kita pupuk semangat dan cita-cita tinggi.
OK

Kamis, 28 Mei 2009

ENTERPRENEURSHI DAN INVESTASI DI BIMA


by fahrysape on WEd May 27, 2009 1:46 am

Forum diskusi di website http://www.bimakab.go.id/forum%20diskusi sangat membantu kita untuk berbagi ide segar dan aktual atas banyak maslah pembangunan yang berkembang didaerah bima terupdate.

Masalah enterpreneurship dan investasi menjadi topik hangat. Berikut sedikit usul ide untuk hal yang hangat tersebut. semoga ada manfaat ???

Enterpreneurship itu bukan teori tetapi domain praktek nyata. Harus dimulai dari yang kecil (kata orang dari NOL), dari diri sendiri sehingga jadi contoh buat yang lain. Bersedia untuk jatuh dan bangun kembali (bangkrut dan untung dua hal tak terpisahkan). Jeli melihat peluang dan memaksimalkannya. Telaten untuk total menekuninya.

Kendala kita adalah manajemen yang masih rapuh. Baru dikit untung langsung show of force (pamer harta) ya beli motorlah, mobillah, rumah mewahlah atau sejenisnya. Jarang berpikir untuk saving (jaga-jaga kalau gak lucky).

Kadang kendala besar juga adalah dagang sosialis (maksudnya: sifat kekeluargaan kita yang kuat justru buruk untuk berkembangnya usaha, belum apa-apa sudah ada penghutang macet sampai modal ikut dihutang, repotnya lagi kalau si kreditur itu keluarga dekat. mau ditagih sungkan, gak ditagih bangkrut, ditagih dicaci maki pula). Tetapi jangan itu jadi masalah dulu deh, yang penting sekarang kita memulai kecil-kecilan. memulai inilah problem tersulit. kalau udah berjalan kita bisa sambil belajar khan? Sungguh, dari sinilah lahir pengusaha2 muda yang kuat dimasa depan.

Investasi itu sebenarnya gampang kok. Setiap investor pingin untung. Usaha aman dan langgeng. Apa ada jaminan untuk itu? ini yang masih diperdebatkan. disini pula peran PEMDA sebagai regulator. Untuk Bima, banyak investor yang mengincar. Hanya masih ragu. Belum apa-apa demonstrasi marak, pungli aktif, semua dipolitisasi. Mana tahan bro !??

Bagi investor yang utama adalah KEPASTIAN SAJA. Nah...disini mesti harus diregulasi oleh Pemda bahwa ada share (bagi hasil) yang jelas dan menguntungkan semua pihak (istilah win-win solution mungkin lebih tepatnya). Formulasi sharing profit inilah yang tersulit selama ini. Why ??? Banyak kepentingan yang bersilang-lintas. Dan kita tidak pernah mau belajar pada kesuksesan daerah lain.

Contoh kasus : Petani bawang itu adalah korban ketidakberdayaan semata. Wacana pabrik bawang goreng aja ga bisa diwujudkan. Koperasi yang ada (KUD-Koperasi unit desa) masih senang soal simpan pinjam melulu. Ide untuk mengorganisir petani bawang masih hanya mimpi. Coba bayangkan betapa enaknya petani kalau bibit bawang disediakan koperasi, obat2an tersedia pula dan hasil ditampung. Dicarikan pasar yang bagus. Harga stabil. Keuntungan pasti stabil pula.

Apalagi yang dijual sudah punya nilai tambah : digoreng dulu misalnya. Pasti deh Indofood melirik Bima sebagai pemasok bahan baku bawang goreng andalan. Kenyataan hari ini, petani bawang diperas oleh tengkulak2 dengan modal OMDo (Omong Doangnya). Harga dipotong, timbangan dipotong, itupun selain permainan daci yang lihai pula. Harga tidak dibayarkan langsung, kadang dilupakan. Keuntungan pasti ada ditangan tengkulak itu. padahal, mereka tidak menaggung resiko usaha apapun jua. Anehnya, petani bawang hangus dibakar matahari, yang untung palele dan pedagang pengumpul. Usaha perikanan, gak berbeda jauh kok. Ngono-ngono iku rek.
Bagaimana ini?. Apa kita tergugah >????>>>

Salam

http://elfahrybima.blogspot.com/
rein_marewo@yahoo.co.id
Read More......

Rabu, 27 Mei 2009

HUMAN RELIABILITY


by FAHRY MAREWO
** dari berbagai sumber

BERIKUT TELAAH KESALAHAN (ERRORR) MANUSIA
SIMAK DEH --------------------->>>>>

Contents

1 Human Reliability Analysis Techniques
1.1 PRA-Based Techniques
1.2 Cognitive Control Based Techniques
1.3 Related Techniques

2 Human Error
2.1 Categories of Human Error
2.2 Human Factors Analysis and Classification System (HFACS)
2.3 Controversies
2.4 See Also

3 See also

4 References

5 Further reading

6 External links
6.1 Standards and Guidance Documents
6.2 Tools
6.3 Research Labs
6.4 Media coverage
6.5 Networking

Human reliability is related to the field of human factors engineering, and refers to the reliability of humans in fields such as manufacturing, transportation, the military, or medicine. Human performance can be affected by many factors such as age, circadian rhythms, state of mind, physical health, attitude, emotions, propensity for certain common mistakes, errors and cognitive biases, etc.

Human reliability is very important due to the contributions of humans to the resilience of systems and to possible adverse consequences of human errors or oversights, especially when the human is a crucial part of the large socio-technical systems as is common today. User-centered design and error-tolerant design are just two of many terms used to describe efforts to make technology better suited to operation by humans.

Human Reliability Analysis Techniques

A variety of methods exist for Human Reliability Analysis (HRA) (see Kirwan and Ainsworth, 1992; Kirwan, 1994). Two general classes of methods are those based on probabilistic risk assessment (PRA) and those based on a cognitive theory of control.

PRA-Based Techniques

One method for analyzing human reliability is a straightforward extension of probabilistic risk assessment (PRA): in the same way that equipment can fail in a plant, so can a human operator commit errors. In both cases, an analysis (functional decomposition for equipment and task analysis for humans) would articulate a level of detail for which failure or error probabilities can be assigned. This basic idea is behind the Technique for Human Error Rate Prediction (THERP) (Swain & Guttman, 1983). THERP is intended to generate human error probabilities that would be incorporated into a PRA. The Accident Sequence Evaluation Program (ASEP) Human Reliability Procedure is a simplified form of THERP; an associated computational tool is Simplified Human Error Analysis Code (SHEAN) (Wilson, 1993). More recently, the US Nuclear Regulatory Commission has published the Standardized Plant Analysis Risk (SPAR) human reliability analysis method also because of human error (SPAR-H) (Gertman et al, 2005).

Cognitive Control Based Techniques

Erik Hollnagel has developed this line of thought in his work on the Contextual Control Model (COCOM) (Hollnagel, 1993) and the Cognitive Reliability and Error Analysis Method (CREAM) (Hollnagel, 1998). COCOM models human performance as a set of control modes -- strategic (based on long-term planning), tactical (based on procedures), opportunistic (based on present context), and scrambled (random) -- and proposes a model of how transitions between these control modes occur. This model of control mode transition consists of a number of factors, including the human operator's estimate of the outcome of the action (success or failure), the time remaining to accomplish the action (adequate or inadequate), and the number of simultaneous goals of the human operator at that time. CREAM is a human reliability analysis method that is based on COCOM.

Related Techniques

Related techniques in safety engineering and reliability engineering include Failure mode and effects analysis, Hazop, Fault tree, and SAPHIRE: Systems Analysis Programs for Hands-on Integrated Reliability Evaluations.

Human Error

Human error has been cited as a cause or contributing factor in disasters and accidents in industries as diverse as nuclear power (e.g., Three Mile Island accident), aviation (see pilot error), space exploration (e.g., Space Shuttle Challenger Disaster), and medicine (see medical error). It is also important to stress that "human error" mechanisms are the same as "human performance" mechanisms; performance later categorized as 'error' is done so in hindsight (Reason, 1991; Woods, 1990): therefore actions later termed "human error" are actually part of the ordinary spectrum of human behaviour. The study of absent-mindedness in everyday life provides ample documentation and categorization of such aspects of behavior. While human error is firmly entrenched in the classical approaches to accident investigation and risk assessment, it has no role in newer approaches such as Resilience Engineering.[1]

Categories of Human Error

There are many ways to categorize human error (see Jones, 1999).

•exogenous versus endogenous (i.e., originating outside versus inside the individual) (Senders and Moray, 1991)
•situation assessment versus response planning (e.g., Roth et al, 1994) and related distinctions in
oerrors in problem detection (also see signal detection theory)
oerrors in problem diagnosis (also see problem solving)
oerrors in action planning and execution (Sage, 1992) (for example: slips or errors of execution versus mistakes or errors of intention; see Norman, 1988; Reason, 1991)
•By level of analysis; for example, perceptual (e.g., optical illusions) versus cognitive versus communication versus organizational.

The cognitive study of human error is a very active research field, including work related to limits of memory and attention and also to decision making strategies such as the availability heuristic and other cognitive biases. Such heuristics and biases are strategies that are useful and often correct, but can lead to systematic patterns of error.

Misunderstandings as a topic in human communication have been studied in Conversation Analysis, such as the examination of violations of the Cooperative principle and Gricean maxims.

Organizational studies of error or dysfunction have included studies of safety culture. One technique for organizational analysis is the Management Oversight Risk Tree (MORT) (Kirwan and Ainsworth, 1992; also search for MORT on the FAA Human Factors Workbench

Human Factors Analysis and Classification System (HFACS)

Main article: Human Factors Analysis and Classification System
See Human Factors Analysis and Classification System in Main article: National Fire Fighter Near-Miss Reporting System

The Human Factors Analysis and Classification System (HFACS) was developed initially as a framework to understand "human error" as a cause of aviation accidents (Shappell and Wiegmann, 2000; Wiegmann and Shappell, 2003). It is based on James Reason's Swiss cheese model of human error in complex systems. HFACS distinguishes between the "active failures" of unsafe acts, and "latent failures" of preconditions for unsafe acts, unsafe supervision, and organizational influences. These categories were developed empirically on the basis of many aviation accident reports.

Unsafe acts are performed by the human operator "on the front line" (e.g., the pilot, the air traffic controller, the driver). Unsafe acts can be either errors (in perception, decision making or skill-based performance) or violations (routine or exceptional). The "errors" here are similar to the above discussion. Violations are the deliberate disregard for rules and procedures. As the name implies, routine violations are those that occur habitually and are usually tolerated by the organization or authority. Exceptional violations are unusual and often extreme. For example, driving 60 mph in a 55-mph zone speed limit is a routine violation, but driving 130 mph in the same zone is exceptional.

There are two types of preconditions for unsafe acts: those that relate to the human operator's internal state and those that relate to the human operator's practices or ways of working. Adverse internal states include those related to physiology (e.g., illness) and mental state (e.g., mentally fatigued, distracted). A third aspect of 'internal state' is really a mismatch between the operator's ability and the task demands; for example, the operator may be unable to make visual judgments or react quickly enough to support the task at hand. Poor operator practices are another type of precondition for unsafe acts. These include poor crew resource management (issues such as leadership and communication) and poor personal readiness practices (e.g., violating the crew rest requirements in aviation).

Four types of unsafe supervision are: Inadequate supervision; Planned inappropriate operations; Failure to correct a known problem; and Supervisory violations.
Organizational influences include those related to resources management (e.g., inadequate human or financial resources), organizational climate (structures, policies, and culture), and organizational processes (such as procedures, schedules, oversight).

Controversies

Some researchers have argued that the dichotomy of human actions as "correct" or "incorrect" is a harmful oversimplification of a complex phenomena (see Hollnagel and Amalberti, 2001). A focus on the variability of human performance and how human operators (and organizations) can manage that variability may be a more fruitful approach. Newer approaches such as Resilience Engineering mentioned above, highlights the positive roles that humans can play in complex systems. In Resilience Engineering, failures are seen as the flip side of success.

See Also

CCPS, Guidelines for Preventing Human Error. This book explains about qualitative and quantitative methodology for predicting human error. Qualitative methodology called SPEAR: Systems for Predicting Human Error and Recovery, and quantitative methodology also includes THERP, etc.

References

Gertman, D. L. and Blackman, H. S. (2001). Human reliability and safety analysis data handbook. Wiley.
Gertman, D., Blackman, H., Marble, J., Byers, J. and Smith, C. (2005). The SPAR-H human reliability analysis method. NUREG/CR-6883. Idaho National Laboratory, prepared for U. S. Nuclear Regulatory Commission.[1]
Hollnagel, E. (1993). Human reliability analysis: Context and control. Academic Press.
Hollnagel, E. (1998). Cognitive reliability and error analysis method: CREAM. Elsevier.
Hollnagel, E. and Amalberti, R. (2001). The Emperor’s New Clothes, or whatever happened to “human error”? Invited keynote presentation at 4th International Workshop on Human Error, Safety and System Development.. Linköping, June 11-12, 2001.
Hollnagel, E., Woods, D. D., and Leveson, N. (Eds.) (2006). Resilience engineering: Concepts and precepts. Ashgate.
Jones, P. M. (1999). Human error and its amelioration. In Handbook of Systems Engineering and Management (A. P. Sage and W. B. Rouse, eds.), 687-702. Wiley.
Kirwan, B. (1994). A practical guide to human reliability assessment. Taylor & Francis.
Kirwan, B. and Ainsworth, L. (Eds.) (1992). A guide to task analysis. Taylor & Francis.
Norman, D. (1988). The psychology of everyday things. Basic Books.
Reason, J. (1990). Human error. Cambridge University Press.
Roth, E. et al (1994). An empirical investigation of operator performance in cognitive demanding simulated emergencies. NUREG/CR-6208, Westinghouse Science and Technology Center. Report prepared for Nuclear Regulatory Commission.
Sage, A. P. (1992). Systems engineering. Wiley.
Senders, J. and Moray, N. (1991). Human error: Cause, prediction, and reduction. Lawrence Erlbaum Associates.
Shappell, S. & Wiegmann, D. (2000). The human factors analysis and classification system - HFACS. DOT/FAA/AM-00/7, Office of Aviation Medicine, Federal Aviation Administration, Department of Transportation..[2]
Swain, A. D., & Guttman, H. E. (1983). Handbook of human reliability analysis with emphasis on nuclear power plant applications.. NUREG/CR-1278 (Washington D.C.).
Wiegmann, D. & Shappell, S. (2003). A human error approach to aviation accident analysis: The human factors analysis and classification system.. Ashgate.
Wilson, J.R. (1993). SHEAN (Simplified Human Error Analysis code) and automated THERP. United States Department of Energy Technical Report Number WINCO--11908. [3]
Woods, D. D. (1990). Modeling and predicting human error. In J. Elkind, S. Card, J. Hochberg, and B. Huey (Eds.), Human performance models for computer-aided engineering (248-274). Academic Press.

Latent human error

A Latent human error is a human error which is likely to be made due to systems or routines that are formed in such a way that humans are disposed to making these errors. Latent human error is a term used in safety work and accident prevention, especially in aviation.
By gathering data about errors made, then collating, grouping and analyzing them, it can be determined whether a disproportionate amount of similar errors are being made. If this is the case, a contributing factor may be disharmony between the respective systems/routines and human nature or propensities. The routines or systems can then be analyzed, potential problems identified, and amendments made if necessary, in order to prevent future errors, incidents or accidents.

APA ANDA TERMASUK DALAMA MANUSIA ERRORRRRRRRR ?????
SEMOGA TIDAK DEH.
Read More......

Jumat, 22 Mei 2009

SAAT SAAT BERHARGA


BY FAHRY MAREWO

Harga waktu tak tertentukan. Tetapi diyakini waktu adalah deretan ukiran pigura yang yang mahal. Sebab, waktu dapat memenuhi setiap ambisi kehidupan yan pernah kita miliki. Dengan berkolaborasi dengan ruang (space), waktu dapat menentukan apapun yang kita inginkan. Hari ini, menjadi siklus baru bagi babak kehidupan yang kita jalani. Saat kita mengaliri waktu dengan beragam kreatifitas yang bermanfaat maka waktu akan menyodorkan kita pada pengharapan yang indah. Sebaliknya, saat waktu kita lebur dengan hal sia-sia, maka kita telah melepaskan harga mahal kehidupan.

Waktu bergulir dan menerobos ruang masa depan dengan tidak bisa dibalik berputar laksana roda yang mundur. Waktu terus maju dan menepis masa lalu. Selebihnya, menjemput hari esok dan masa depan kita. Harga waktu akan kita tentukan sendiri bersama hal yang kita ukir bersamanya. Saat ini, saat-saat berharga tengah berlangsung. Senyampang kita masih bebas bergumul dengan waktu, mestinya kita juga bisa mengatur dengan agenda agenda besar kita.

Iqbal, filsof besar Mesir, yang kita kenal sungguh telah mengingatkan kita dengan petuah agung, "mengalir berarti hidup, diam itu mati".

Ada ga adanya kita (kehadiran) --- quo vadis --- ditentukan oleh manfaat yang kita raih pada gulir dan alir waktu. Shalat mayit (muslim, fardhu kifayah) dengan gamblang menggambar filosofi ini. Shalat ini tampa gerak ruku' dan sujud, hanya takbir dan salam. Bahwa kematian itu memang akan dirayakan dengan ketiadaan gerak dan aktifitas bermanfaat.

Jika hidup singkat ini kita jalani dengan tampa gerak manfaat, maka dalam makna filosofinya, kita sesungguhnya tengah menshalati jasad sendiri. Sebuah hal yang semestinya menakutkan kita.

Pertanyaan yang layak bagi kita adalah : apakah kita hari ini sedang diam-diam, tampa menyadari, sedang melakukan shalat jenazah untuk diri sendiri ???

Mari kita jawab dengan tindakan nyata.

OK

Bagaimana pendapat ANDA ???
Read More......

Rabu, 20 Mei 2009

MANADO OCEAN DECLARATION


by fahry for ocean world

(ADOPTED ON 14 MAY 2009, IN MANADO)

World Ocean Conference
Manado, Indonesia, 11-14 May 2009
Ministerial/High Level Meeting

Page 1 of 5

We, the Ministers and the Heads of Delegations assembled at the World Ocean
Conference to discuss threats to the ocean, the effects of climate change on the
ocean, and the role of ocean in climate change, held in Manado, Indonesia, on
May 14, 2009,

RECALLING the 1982 United Nations Convention on the Law of the Sea
(UNCLOS), as the instrument that sets out the legal framework within which all
activities in the oceans and seas must be carried out, the United Nations
Framework Convention on Climate Change (UNFCCC) and its Kyoto Protocol,
the Convention on Biological Diversity (CBD), and the Convention on the
Prevention of Marine Pollution by Dumping of Wastes and Other Matter, 1972,
and its 1996 Protocol,

RECOGNIZING that oceans and coasts provide valuable resources and
services to support human populations, particularly coastal communities that
depend heavily on them, and that the sustainable use of marine living resources
will enhance global food security and contribute towards poverty reduction for
present and future generations,
EXPRESSING CONCERN over the degradation of the marine environment, in
particular the loss of marine biodiversity, and marine ecosystems continuing to
be threatened by land-based and sea-based pollution, alien invasive species,
unsustainable use of marine and coastal resources, physical alteration, poor
land-use planning, and socio-economic pressures,

EQUALLY CONCERNED over marine ecosystems and living resources being
affected by sea level rise, increased water temperature, ocean acidification,
changing weather patterns, and other variations that may result from climate
change, and how these alterations may aggravate the existing pressures of
marine environmental degradation and increase risks to global food security,
economic prosperity, and the well-being of human populations,
NOTING the finding of the Fourth Assessment Report of the Intergovernmental
Panel on Climate Change (IPCC) that climate change will especially affect
ecosystems, in particular mangroves, salt marshes, and low-lying coastal
systems; certain regions, including the Arctic, Africa, Small Islands, and Asian
and African megadeltas; and certain people, including the poor, young children,
and the elderly, and reports of the Food and Agriculture Organisation (FAO) that
identified key issues and consequences of climate change for fisheries,

MINDFUL that progressive acidification of ocean water and increasing
temperature will have negative impacts on marine biota, particularly shellWorld
Ocean Conference

Page 2 of 5

forming organisms, their dependent species, and coral reef structure and
function,

RECOGNIZING ALSO that sea level rise due to thermal expansion of the
oceans and melting of ice sheets and glaciers are threatening the very
existence of unprotected coastal communities situated at locations that are
marginally above present sea level, and are increasing the vulnerability and
isolation of small islands and low-lying coastal communities, due to their
dependence on the coastal environment, fisheries, and critical infrastructure,

ALSO MINDFUL of the potential impact of climate change on the attainment of
relevant internationally agreed sustainable development goals, including those
contained in the Millennium Development Goals, particularly for Least
Developed Countries and Small Island Developing States,

RECOGNIZING the crucial role of the ocean as a component of the global
climate system and in moderating its weather systems, and that the
oceanographic processes that result from this interaction will affect the rate of
climate change,

NOTING the recent increase in the intensity of hurricanes, and projections
regarding typhoons, tropical cyclones, and meteorological events worldwide and
resultant damages especially to the developing countries, leading to socioeconomic
challenges,

EMPHASIZING that greater participation and investment in coastal and ocean
observing systems and the wide availability of data from these systems would
allow for better assessment and monitoring of changes in coastal ecosystems
and the ocean environment, including those resulting from climate change and
climate variability, and that interdisciplinary research and monitoring systems
play a significant role in reducing uncertainties with regard to the effects of
climate change on the ocean, and supporting ecosystem-based management,

RECOGNIZING that healthy and productive coastal ecosystems, already
increasingly stressed by land-based and sea-based sources of pollution, coastal
development, and habitat destruction, have a growing role in mitigating the
effects of climate change on coastal communities and economies in the near
term,

RECOGNIZING that an integrated coastal and ocean management approach is
a key in promoting resilience, and thus fundamental to preparing for and
adapting to the effects of climate change on the ocean,

RECOGNIZING the importance of building coastal and ocean resilience in the
face of recent global crises pertaining to energy, food supplies, and financial
systems.

Page 3 of 5

We declare the following:

1. We will strive to achieve long-term conservation, management and
sustainable use of marine living resources and coastal habitats through
appropriate application of the precautionary and ecosystem approaches,
and to implement long-term strategies in meeting the internationally
agreed sustainable development goals, including those contained in the
United Nations Millennium Declaration that are related to the marine
environment, and in so doing will strengthen global partnerships for
development.

2. We stress the need for national strategies for sustainable management of
coastal and marine ecosystems, in particular mangrove, wetland, seagrass,
estuary and coral reef, as protective and productive buffer zones
that deliver valuable ecosystem goods and services that have significant
potential for addressing the adverse effects of climate change.

3. We will implement integrated coastal and ocean management, including
marine and coastal land use planning, to minimize and reduce the risk and
vulnerability of coastal communities and critical infrastructure.

4. We will strive to reduce pollution of ocean, coastal and land areas and to
promote sustainable management of fisheries in accordance with relevant
international agreements and codes of conduct in order to enhance the
health and thus the resilience of coastal and marine ecosystems.

5. We will cooperate in furthering marine scientific research and sustained
integrated ocean observation systems; promote education and public
awareness; work together for the improved understanding on the role of
oceans on climate change and vice-versa, and its effects on marine
ecosystems, marine biodiversity and coastal communities, especially in
developing countries and small island states; invite scientific
community/institutions to continue developing reliable scientific information
on the roles of coastal wetlands, mangrove, algae, sea-grass and coral
reef ecosystems in reducing the effects of climate change; share the
knowledge on available best practices on the dynamic relationship
between oceans and climate; continue promoting consideration of this
relationship in other ocean related fora; and to incorporate this knowledge
into advice on sustainable management practices.

6. We will promote gathering and exchange of information related to climate
change impacts on marine ecosystems, communities, fisheries and other
industries; emergency preparedness, monitoring, and forecasting climate
change and ocean variability; and improving public awareness of early
warning system capacity.

7. We emphasize the need to develop, consistent with international
commitments. comprehensive adaptation measures including within
national sustainable development strategies to address climate-related
impacts on oceans and coasts, and to develop environmentally sound
policies for integrated coastal and ocean management based on reliable

Page 4 of 5

scientific assessments and internationally agreed goals, particularly for
the most vulnerable communities that fully depend on marine resources for
their livelihood.

8. We resolve to promote, for the purposes of increasing coral atolls and
coastal communities resilience and preparation for the impacts of climate
change on oceans, the development of national adaptation measures that
include the effective use of all relevant information, climate-impact
projection scenarios, early warning systems, disaster risk reduction and
risk assessment, and vulnerability mapping to identify priorities for shortterm
and long-term actions.

9. We will strive to implement sustainable development strategies, including
through, inter-alia, appropriately applying a precautionary approach to
coastal and ocean management in addressing the adverse effects of
climate change on oceans, and in this regard, we will take adequate
measures to reduce sources of marine pollution, assure integrated
management, and rehabilitate coastal ecosystems such as estuaries,
coastal wetlands, mangroves, coral reefs, sea-grass beds, and sand
dunes with particular attention to sedimentations as well.

10. We stress the need for financial resources and incentives to further assist
developing countries’ efforts in promoting diversified, environmentally
sustainable livelihood options for coastal communities most vulnerable to
climate change.

11. We also stress the need to promote affordable, environmentally sound,
and renewable ocean technologies and know-how, particularly in
developing countries, noting the relevant provisions in the UNFCCC.

12. We invite Parties to the UNFCCC to consider developing and submitting
climate change adaptation project proposals for coastal and ocean
management to the Adaptation Fund Board for consideration.

13. We will work, individually or collectively and in collaboration with relevant
regional and international organizations and regional seas programmes, to
enhance scientific monitoring activities in accordance with international law
related to the marine environment and to develop ways and means to
adapt to the effects of climate change on the ocean.

14. We resolve to continue, at regional and national levels, to exchange
lessons learned and best practices, and to enhance assessment of the
vulnerability of oceans and coasts to the effects of climate change in order
to facilitate the implementation of adaptation measures.

15. We resolve to further establish and effectively manage marine protected
areas, including representative resilient networks, in accordance with
international law, as reflected in UNCLOS, and on the basis of the best
available science, recognizing the importance of their contribution to
World Ocean Conference
Manado, Indonesia, 11-14 May 2009
Ministerial/High Level Meeting
Page 5 of 5
ecosystem goods and services, and to contribute to the effort to conserve
biodiversity, sustainable livelihoods and to adapt to climate change.

16. We will promote the Large Marine Ecosystem approach that enhances
institutional and international cooperation among countries sharing marine
ecosystems and their resources, due to its wide vision considering
pollution, fisheries, primary production, environmental monitoring, socioeconomic
development, and governance.

17. We thank the United Nations Secretary-General for providing an overview
of ongoing United Nations actions in key climate change-related areas,
which provides useful information on oceans and climate activities.

18. We encourage the efforts of the United Nations Secretary-General to
facilitate cooperation and coordination in the UN System to address
climate change, to emphasize the importance of ensuring that activities
relating to the ocean continue to be reflected in this process.

19. We recognize the importance of improving understanding of the impact of
climate change on the ocean and the need to consider ocean dimensions
to inform adaptation and mitigation strategies, as appropriate, and in this
regard we reiterate the contribution of the 2009 World Ocean Conference.

20. We welcome the efforts of the Coral Triangle Initiative as one of the means
of carrying forward the vision of the 2009 World Ocean Conference.

21. We reiterate the importance of achieving an effective outcome at the COP-
15 of the UNFCCC in Copenhagen 2009 and invite parties to consider how
the coastal and ocean dimension could be appropriately reflected in their
decision.

We express our recognition to the Government and people of the Republic of
Indonesia for their initiative to convene the World Ocean Conference held in
Manado and our deepest gratitude for their hospitality and generosity.

World Ocean Conference
Manado, Indonesia, 11-14 May 2009
Ministerial/High Level Meeting
Read More......

Coral Triangle Program


by fahry sang pecinta lautan

Coral Triangle

The WWF Coral Triangle Program

Scientists have identified an area called the Coral Triangle within the Indo-Pacific region – its boundaries defined by marine zones containing 500 or more species of reef-building coral. WWF’s Coral Triangle Program -- which includes Indonesia, Malaysia, Papua New Guinea, Philippines, Solomon Islands, Timor-Leste and Fiji -- is supporting the Coral Triangle Initiative.

The Initiative started at the Asia Pacific Economic Cooperation (APEC) summit in September 2007, where 21 world leaders endorsed a new proposal to safeguard the rich marine resources of the Indo-Pacific region for future generations. The “Coral Triangle Initiative (CTI) on Coral Reefs, Fisheries, and Food Security” aims to bring together six governments in a multilateral partnership to conserve the extraordinary marine life in the region. The proposal was endorsed in the Sydney APEC Leaders' “Declaration on Climate Change, Energy Security and Clean Development”. United States President George W. Bush welcomed this Initiative during the Summit.

The WWF Coral Triangle Program is working to support this Initiative, and ensure the health of the region’s natural treasures and the millions of livelihoods that depend on it. We are helping ensure that proper environmental, political and socio-economic management is put in place towards

Sustainable coastal fisheries: One of the most lucrative and distinctive of the region’s reef-based fisheries is the live reef fish trade with an estimated value in 2002 of $810 million. WWF’s strategy seeks to replace destructive fishing practices with sustainable ones; reduce over-fishing of wild stocks, promote the uptake of best management practices and sustainable full-cycle mariculture; and promote sustainably sourced fish in restaurants in target Asian cities.

Sustainable off-shore fisheries: The Coral Triangle is home to the world’s largest population of commercially-important tuna species, supplying 50 percent of global tuna production. Our strategy will seek to develop new approaches to channel some of the benefits derived back to tuna resource management in Coral Triangle countries; ensure ecologically based fisheries management that delivers equitable benefits to island communities; reduce illegal, unregulated and unreported fishing; implement incentives for sustainable fishing practices; and help inform and engage civil society on the importance, status and management of oceanic fisheries resources.
Marine protected areas: Thousands of communities depend on seafood as their primary source of protein and income generation. To prevent the loss of biodiversity and prevent further fisheries collapse, well-designed and well-managed networks of marine protected areas and locally managed marine areas are essential. Our strategy will seek to establish mechanisms that provide long-term financial support for effectively managed marine protected areas and locally managed marine areas in the Coral Triangle.

Protecting marine turtles in the Indo-Pacific: The Coral Triangle is home to six of the seven species of marine turtle but threats in the region are significant. In recognition of the crucial ecological role turtles play in maintaining the health and productivity of marine food chains, Our strategy will seek to protect turtles in critical nesting, foraging, and migratory habitats through the establishment of protected areas and the reduction of turtle bycatch through gear change and the promotion of best fishing practices.

Reducing the impacts of climate change and tourism: Global warming is arguably the single biggest threat to the region’s marine productivity. WWF’s strategy will seek to promote an alliance of governments and the tourism/travel sector to actively support emissions reduction measures and implement adaptation measures to reduce the impact of climate change on the region’s coral reefs.

Through key strategies, our vision for its contribution to a WWF Coral Triangle Program on Coral Reefs, Fisheries, and Food Security is that the oceans and coasts of the Coral Triangle, the world’s center of marine bio-diversity, remain vibrant and healthy providing food and livelihoods for generations to come.

Learn more about WWFs successful efforts to help launch the WWF Coral Triangle Program
Read More......

The Coral Triangle Initiative


On coral reefs, fisheries and food security

by fahry from corals

Scientists have identified an area called the Coral Triangle within the
Indo-Pacific – its boundaries defined by marine zones containing 500 or more
species of reef-building coral. This region covers all or part of six countries:
Indonesia (Central and Eastern), Malaysia (Sabah), Papua New Guinea, Philippines,
Solomon Islands and Timor-Leste. Certain neighboring countries – including
Australia, Fiji, New Caledonia and Vanuatu – contain rich coral biodiversity, but with somewhat lower numbers.

To maintain the health and productivity of the Coral Triangle, it is important to think of the region as a large-scale system. This way we can more easily understand and protect the core ecological processes that drive its productivity and sustain the
social and economic benefits for the people dependent on its resources. There is
a growing recognition of the need to share in the responsibility of sustaining these
resources for future generations. Examples of leadership and cooperation among the
Coral Triangle countries include

• In 2004, Indonesia, Philippines, and Malaysia signed an MOU to jointly manage
fisheries, sea turtles and marine protected areas.

• In 2006, Papua New Guinea, Indonesia and Solomon Islands signed an MOU to coordinate management of shared marine resources and sea turtles.

• In 2006, Philippines President Gloria Macapagal-Arroyo signed an Executive Order
on a National Policy on Biological Diversity to be implemented throughout the country, particularly in the Sulu Sulawesi Seascape and Verde Passage.

• The Indonesian government announced their intention to double the extent of
marine protected areas by 2010, and establish 20 million hectares of marine
protected areas by 2020. In the past year alone, Indonesia has added over 2
million hectares into conservation areas.

• Communities in Indonesia, Papua New Guinea, and Solomon Islands have taken
the initiative with local government to establish networks of locally managed marine
areas, sharing lessons in a network across the Coral Triangle region.

The Center of Marine Biodiversity

• Over 600 species of coral and over 3,000 species of fish
• 53% of the world’s coral reefs
• Greatest extent of mangrove forest of any region in the world
• Waters contain spawning and juvenile growth areas for the largest tuna fishery
in the world

A Home to 150 Million People
• Marine resources directly support livelihoods and food security for over 120 million people
• Healthy coral reefs contribute to a growing tourism industry valued at over
US$12.5 billion annually
• Mangroves and healthy coral reefs protect coastal communities from storms and tsunamis, at an estimated value of between $250,000 and $15 million per kilometer of coastline
• Capture fisheries contribute up to 12% of GDP and are a key source of foreign
exchange and employment

Building Multilateral Partnerships

Building on previous collaborative efforts, President Yudhoyono of Indonesia proposed a new multilateral partnership: a Coral Triangle Initiative (CTI) on Coral Reefs, Fisheries, and Food Security. Such an initiative could be centered around high-level, joint political commitments by the six governments of the region, and collaboration with other nations and stakeholders on such issues as fisheries, tourism, private sector engagement, and financial investments. At the recent Asia Pacific Economic Cooperation (APEC) Summit in Sydney, Australia, 21 world leaders endorsed the Coral Triangle Initiative in their APEC Leaders’ Declaration on Climate Change, Energy Security and Clean Development. A first formal governmental planning meeting to advance the CTI will be held in Bali in December.

Key strategies under a Coral Triangle Initiative – Approaches and Tools

Regional mechanisms – Working across sectors with relevant stakeholders to establish and strengthen regional mechanisms needed to address threats to marine biological resources.

Legal framework and governance – Creating the legal framework through existing and new laws at regional, national and local levels.

Private sector collaboration – Building effective partnerships across industry, government and civil society to galvanize private sector action and funding support for effective marine resource management. Addressing all steps in the market chain for sustainability on the supply and demand sides.

Building Capacity – Building the capacity for effective marine resource management and conservation and increasing civil society participation in management decision making.

Ecosystem-Based management of the oceans – Adopting and enforcing sustainable fisheries policies that will maintain critical ecosystem processes, placing sustainable human resource use and stakeholder participation at the center of fisheries management.

Representative networks of marine protected areas (MPAs) – Building effectively managed networks of large-scale MPAs and community-managed areas in places that provide increased potential for resilience and resistance to future climate change impacts and that capture the range of marine and coastal habitats. The MPA establishment and management process will increase civil society participation in decision making, ensuring adequate and sustainable flows of funding for MPAs and broader marine resources management, and for empowering local communities and reducing resource conflict.

Increasing populations of threatened and endangered species – Mitigating threats to highly endangered species and focusing protection strategies on key phases of their life history.

Adaptive management strategies for climate change – Understanding impacts of global warming and integrating adaptation strategies into management and development plans for reduced vulnerability.

Contacts for organizations supporting the governments and regional partners
in the Coral Triangle Initiative:

Kate N ewman
Managing Director
Coral Triangle Initiative
World Wildlife Fund - US
1250 24th Street, NW
Washington, DC 20037-1193
Phone 202-293-4800
kate.newman@wwfus.org

Lida Pet-Soede
Head of Program, Coral Triangle Initiative
World Wildlife Fund - Indonesia
Jalan Petitenget 22
Kerobokan, Bali 80361
Indonesia
Phone 62361-730185
lpet@wallacea.wwf.or.id
Emily Tibbott
Senior A dvisor, Finance and Policy
Asia-Pacific R egion
The Nature Conservancy
4245 N. Fairfax Drive, Suite 100
Arlington, VA 22203
Phone 703-841-4825
etibbott@tnc.org

Sheldon Cohen
Senior Policy Coordinator, Coral Triangle
The Nature Conservancy
Coral Triangle Center
Jl. Pengembak No. 2 / Sanur, Bali 80228
Indonesia
Phone 62361-287272
scohen@tnc.org

Rebecca Chacko
Marine Policy Manager
International Policy and Science
Conservation International
2011 Crystal Drive, Suite 500
Arlington, VA 22202
Phone 703-341-2400
rchacko@conservation.org

Romy Trono
Executive Director, Philippines
Conservation International
6 Maalalahanin St., Teachers Village
Philam Homes
Quezon City, 1101 Philippines
Phone 632-412-8194; 926-8461; 924-8235
rtrono@conservation.org

Strong Partnerships

Effective conservation and marine resource management is achieved through
collaboration among a range of partners – from governments to local communities,
and from NGOs to businesses. By building lasting partnerships among the Coral
Triangle nations and stakeholders inside and outside the region, conservation and
management of the Coral Triangle’s outstanding marine resources can be assured
for future generations.

A partial list of governments and key stakeholders for the Coral Triangle
Initiative includes The governments of:

Indonesia
Malaysia
Papua New Guinea
The Philippines
Solomon Islands
Timor-Leste
Australia
France
Japan
New Zealand
United Kingdom
United States
Asian Development Bank
Conservation International
Global Environment Facility
The Nature Conservancy
World Bank
WWF

Sources from : The Coral Triangle Initiative

Thanks
Read More......

Coral Triangle Initiative Headlines World Ocean Conference


by fahry untuk coral kita

MANADO, North Sulawesi, Indonesia, May 12, 2009 (ENS)

Thousands of delegates from 72 countries have gathered in Manado for a conference on coastal and marine resources that will conclude Friday with a plan of action to safeguard the largest marine reserve in history, the Coral Triangle Initiative.
From the Philippines in the north to Indonesia in the south, the Coral Triangle supports the world's greatest density of marine life, more than 600 species of reef-building corals and the world's largest population of commercially important tuna species, supplying 50 percent of global tuna production.

This ocean expanse covers an area of 2.3 million square miles (5.7 million km2). It is inhabited by more than 3,000 species of reef fish. Over 150 million people live within the Coral Triangle, of which an estimated 2.25 million fishers are dependant on marine resources for their livelihoods.

Limestone reefs, sea grass meadows and coastal mangrove forests attract sea turtles and humpback whales to feed, breed and rest.

To protect this vulnerable area from the impacts of global warming, foreign affairs ministers from the six countries bordering the Coral Triangle - Indonesia, Malaysia, Papua New Guinea, the Philippines, the Solomon Islands and Timor Leste - are in Manado for the first coral summit, with sessions all this week.

On Friday, heads of state from the six countries will meet for the first Leaders Summit of the Coral Triangle Initiative.

"Both the World Ocean Conference and the Coral Triangle Initiative are helping the region to collectively address critical threats to marine and coastal resources posed by climate change, unsustainable fishing methods and land-based pollution," said Asian Development Bank Vice-President Lawrence Greenwood. "ADB strongly supports these efforts."

Greenwood will participate in the summit and will co-chair, with Indonesian Maritime Affairs and Fisheries Minister Freddy Numberi, a CTI Partnership Dialogue on Friday, with ministers and senior officials from the six countries and other organizations supporting the Coral Triangle Initiative.

Other founding Coral Triangle Initiative partners include the Global Environment Facility, a funding organization; the governments of Australia and the United States, and three international NGOs – Conservation International, The Nature Conservancy, and WWF.

Mobilization of financial resources to support the Coral Triangle Initiative has so far generated commitments or pledges of around US$350 million. The GEF has committed up to $63 million in grants coordinated through the Asian Development Bank, and the U.S. government a further $40 million. ADB and other development partners are expected to contribute new funding close to $300 million.

The Coral Triangle Initiative was first proposed at the Asia-Pacific Economic Cooperation meeting in Australia in 2007 before being endorsed at the United Nations climate change conference in Bali in 2007.

On Friday, the six heads of state are expected to adopt a regional plan of action that will serve as a blueprint for their cooperation on sustainable management of coastal and marine resources.

The six countries already have agreed to set up a mechanism to combat coral bleaching and establish a Coral Bleaching Alert Network supported by satellite surveillance by the U.S. National Oceanic and Atmospheric Administration.

"The Coral Triangle Initiative is one of the most important marine conservation measures ever undertaken anywhere in the world and the first to span several countries," said Professor Terry Hughes, director of Australian Research Council's Centre of Excellence for Coral Reef Studies, who is at the Coral Triangle meeting today in Manado.

"It is as much about nation building and food security as it is about reef conservation," he said.

Indonesian Maritime Affairs and Fisheries Minister Freddy Numberi officially opened the World Ocean Conference on Monday, saying there are two things that both developed and developing countries can do to arrest climate change - reduce emissions of greenhouse gases and conserve biodiverse areas.

The Manado Ocean Declaration expected at the end of the World Ocean Conference will be a political commitment among nations to bring protection of oceans into international conventions, said former Indonesian environmental affairs minister Emil Salim.

Marine issues should be included on the agency at the UN climate change conference in Copenhagen in December, he said.

"It's a political commitment among nations that oceans must be included in international conventions on climate change," said Salim on Monday.

Experts have warned that the world's coral reefs may be depleted by 2050 if no immediate action is taken to protect them.

Threats to the Coral Triangle include outbreaks of the notorious crown of thorns starfish, according to 2007 surveys by the Bronx Zoo-based Wildlife Conservation Society and ARC Centre of Excellence for Coral Reef Studies.
The starfish - a predator that feeds on corals by spreading its stomach over them and using digestive enzymes to liquefy tissue - were discovered in large numbers by the researchers in reefs in Halmahera, Indonesia, at the heart of the Coral Triangle.

Dr. Andrew Baird of the ARC Centre and James Cook University, said in early 2008, "We witnessed a number of active outbreaks of this coral predator. There was little to suggest that the reefs have been much affected by climate change as yet: the threats appear far more localized."

There may still be time to save the reefs. At the World Ocean Conference, an international team of scientists has proposed a set of basic rules to help save imperiled coral reefs from destruction.

"The catastrophic decline in the world's coral reefs demands urgent management responses on two fronts," say the researchers from the ARC Centre, The Australian Museum, Woods Hole Oceanographic Institution, James Cook, Perpignan and the United Nations Universities and The Nature Conservancy.

The key to saving threatened coral ecosystems is to maintain connective links between reefs allowing larvae to flow between them and re-stock depleted areas, advises the team led by Pew Fellow Dr. Laurence McCook of Australia's Great Barrier Reef Marine Park Authority.

"Ecological connectivity is critically important to the resilience of coral reefs and other ecosystems to which they are linked," says Dr. McCook. "The ability of reefs to recover after disturbances or resist new stresses depends critically on the supply of larvae available to reseed populations of key organisms, such as fish and corals. For reefs to survive and prosper they must in turn be linked with other healthy reefs."

The researchers propose rules of thumb for keeping coral ecosystems viable, based on the results of research carried out in the Bohol Sea in the Philippines, the Great Barrier Reef in Australia, and Kimbe Bay in Papua New Guinea.

They would allow margins of error in extent and nature of protection, as insurance against unforeseen threats, spread risks among areas, and allow for reef species to spread over distances of 20 to 30 kilometers.

The scientists advise managers to protect whole reefs where possible, place buffer zones around core areas and use a range of conservation approaches, including marine protected areas.

They say the aim should be to create networks of protected areas that:

protect all the main types of reef creatures, processes and connections, known and unknown achieve sufficient protection for each type of reef habitat type, and for the whole region achieve maximum protection for all reef processes contain several examples of particular reef types to spread the risk

The rules are designed to operate in a range of situations, ever where detailed scientific knowledge of local coral reefs and their species is sparse, the scientists say in a review article in the current issue of the journal "Coral Reefs."

Copyright Environment News Service (ENS) 2009. All rights reserved.
Read More......

ARAHAN PENGEMBANGAN KAWASAN PESISIR, LAUT DAN PULAU-PULAU KECIL NTB.


by. fahry mbojo

Cheap Bali Hotels
Compare Hotels In Bali. Find The Cheapest Hotels Online.
CheapEurope.com/Bali

A. Arahan Pemanfaatan Kawasan Lindung
Kawasan lindung bertujuan melindungi ekosistem yang dianggap perlu dijaga keberadaannya untuk kelangsungan hidup biota yang terdapat di kawasan pesisi, laut dan pulau-pulau kecil, serta ekosistem yang mempunyai kekhasan habitat atau biotanya. Berdasarkan fungsi, peranan dan strategi penataan ruang ekosistem, maka penataan ruang kawasan lindung diarahkan pada hal-hal sebagai berikut :

* Keberadaan ekosistem terumbu karang, hutan bakau, padang lamun, dan ekosistem kritis (nursery ground dan spawning ground).
* Kondisi terumbu karang (persen tutupan dan luasan), ketebalan dan kepadatan hutan bakau, serta kondisi padang lamun (persen tutupan dan luasan).
* Keberadaan biota yang endemik, unik, khas dan indah.

Pesisir dan laut Nusa Tenggara Barat mempunyai hamparan ekosistem terumbu karang, hutan bakau dan padang lamun di sekeliling Nusa Tenggara Barat. Namun demikian, arahan penataan ruang kawasan lindung yang sesuai dengan strategi penataan ditentukan pada 15 kawasan lindung, yaitu:
* Kawasan Lindung Gili Indah (Gili Terawangan, Gili Meno dan Gili Air),
* Kawasan Lindung Gili Gede dan Sekitarnya (Labuhan Poh),
* Kawasan Lindung Teluk Sepi (Buwun Mas/Sekotong),
* Kawasan Lindung Kuta dan Sekitarnya (Tanjung Tampa - Teluk Ayang),
* Kawasan Lindung Teluk Ekas dan Teluk Sereweh,
* Kawasan Lindung Tanjung Luar,
* Kawasan Lindung Gili Sulat dan sekitarnya,
* Kawasan Pantai Utara Sumbawa dan sekitarnya (P.Panjang, P.Namo, P.Kalong, P.Saring, P.Air Tawar, P.Moyo) ;
* Kawasan Teluk Saleh (P.Liang, P.Ngali, P.Rakit, P.Satonda, P.Moyo);
* Kawasan Teluk Sanggar (sekitar G.Tambora);
* Kawasan Teluk Cempi (sekitar muara sungai Teluk Cempi, Lakey, Wane, Rontu );
* Kawasan Teluk Waworada (Sondo, Laju, Doro O?o, Waworada);
* Kawasan Teluk Bima Pantai Teluk Bima);
* Kawasan Sape (P. Sangiang);
* Kawasan Maluk dan sekitarnya (Beru dan Belo).

1. Kawasan Lindung Gili Indah (Gili Terawangan, Gili Meno dan Gili Air)
Kriteria yang dipertimbangkan antara lain adalah hamparan terumbu karang yang cukup luas dengan kondisi baik, keindahan terumbu karfile:///usr/share/doc/HTML/index.htmang, ikan karang dan biota laut lainnya, karang cabang Acropora biru yang khas dengan warna yang menarik, hamparan padang lamun yang cukup luas dengan kondisi baik. Batas kawasan ditentukan pada jarak aman bagi komunitas terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 11 km yang meliputi delapan buah desa, yaitu Desa Meninting dan Batu Layar (Kecamatan Gunung Sari, Kabupaten Lombok Barat) serta Desa Pemenang Barat, Gili Indah, Pemenang Timur, Sokong, Tanjung dan Jenggala (Kecamatan Tanjung, Kabupaten Lombok Barat).
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Gili Indah, yaitu :
* menghindari kontak langsung baik dari pengunjung, nelayan maupun alat terhadap komunitas karang, biota laut, rumput laut dan lamun;
* menghindari pencemaran lingkungan sekitar kawasan;
* menjaga keseimbangan ekosistem yang ada.

2. Kawasan Lindung Gili Gede dan Sekitarnya (Labuhan Poh)
Kriteria yang dipertimbangkan antara lain adalah keberadaan terumbu karang dengan kondisi baik, daerah perairan terlindung, keberadaan padang lamun dan hutan bakau yang merupakan daerah kritis biota laut. Batas file:///usr/share/doc/HTML/index.htmkawasan ditentukan pada jarak aman bagi komunitas terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 6 km yang meliputi dua desa di Kecamatan Sekotong Tengah Kabupaten Lombok Barat, yaitu Desa Pelangan dan Sekotong Barat.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Gili Gede adalah :

* menghindari kontak langsung baik dari pengunjung, nelayan maupun alat terhadap komunitas karang, biota laut, rumput laut, dan lamun
* mencegah penambangan batu karang dan perusakan terumbu oleh penambang batu atau nelayan;
* menghindari perubahan garis pantai; dan (iv) menjaga keseimbangan ekosistem yang ada.
3. Kawasan Lindung Teluk Sepi (Buwun Mas/Sekotong)
Kriteria yang dipertimbangkan antara lain adalah ekosistem hutan bakau dan padang lamun yang merupakan daerah kritis biota laut dan penyangga pantai, daerah terlindung yang potensi untuk pengembangan budidaya laut. Batas kawasan ditentukan pada jarak aman bagi komunitas hutan bakau dan padang lamun terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 6 km yang meliputi Desa Buwun Mas, Kecamatan Sekotong Tengah, Kabupaten Lombok Barat.
Arahan yang perlu diperhatikan untuk mencegah kefile:///usr/share/doc/HTML/index.htmrusakan pada Kawasan Lindung Teluk Sepi adalah
* mencegah dan menghindari penebangan pohon file:///usr/share/doc/HTML/index.htmhutan bakau, dan konversi lahan;
* menata budidaya biota laut (rumput laut dan kerang mutiara) sesuai dengan kondisi oseanografi, bentuk teluk, luas kawasan, teknik budidaya dan kualitas air;
* menjaga keseimbangan ekosistem dan kualitas perairan.

4. Kawasan Lindung Kuta dan Sekitarnya (Tanjung Tampa - Teluk Awang)
Kriteria yang dipertimbangkan antara lain adalah kehadiran cacing nyale (cacing laut/polychaeta) pada musim tertentu, terumbu karang, keindahan pantai dengan hamparan pasir putih. Batas kawasan ditentukan pada jarak aman bagi habitat cacing nyale dan komunitas terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 6 km yang meliputi empat desa di Kecamatan Pujut, Kabupaten Lombok Tengah, yaitu Desa Sukadana, Kuta, Prabu dan Tumpak.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung Kuta adalah :

* menghindari perubahan garis pantai;
* menjaga keseimbangan ekosistem;
* dan kualitas perairan.

5. Kawasan Lindung Teluk Ekas dan Teluk Sereweh
Kriteria yang dipertimbangkan antara lain adalah hamparan terumbu karang dengan kondisi baik, ekosistem hutan bakau dan hamparan padang lamun yang merupakan daerah kritis, dan daerah terlindung yang potensial untuk pengembangan budidaya laut, keindahan pantai dengan hamparan pasir putih. Batas kawasan ditentukan pada jarak aman bagi komunitas terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 6 km yang meliputi tiga buah desa di Kecamatan Keruak, Kabupaten Lombok Timur (Desa Pemongkong, Tanjung Luar dan Jerowaru).
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung Teluk Ekas dan Teluk Sereweh adalah :

* mencegah kerusakan fisik terumbu karang, hutan bakau dan padang lamun;
* menata budidaya biota laut (rumput laut dan kerang mutiara) sesuai dengan kondisi oseanografi, bentuk teluk, luas kawasan, teknik budidaya dan kualitas air;
* melakukan pengaturan antar aktifitas yang berkepentingan.

6. Kawasan Lindung Tanjung Luar
Kriteria yang dipertimbangkan adalah keberadaan terumbu karang dengan kondisi baik, hamparan padang lamun dan hutan bakau yang merupakan daerah kritis. Batas kawasan ditentukan pada jarak aman bagi komunitas terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 6 km yang meliputi Desa Tanjung Luar, Jerowaru dan Pemongkong (Kecamatan Keruak, Kabupaten Lombok Timur).
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung Tanjung Luar adalah :

* mencegah kerusakan fisik terumbu karang, hutan bakau dan padang lamun;
* melakukan penataan antar aktifitas yang berkepentingan;
* menghindari pencemaran lingkungan dalam kawasan.
7. Kawasan lindung Gili Sulat dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah ketebalan dan kepadatan hutan bakau Rhizophora yang tinggi, hamparan terumbu karang (terutama di sebelah barat pulau) dengan kondisi baik, keanekaragaman ikan karang yang tinggi, hamparan padang lamun dan daerah kritis. Batas kawasan ditentukan pada jarak aman bagi komunitas hutan bakau dan terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada radius 11 km yang meliputi tiga desa di Kecamatan Sambelia, Kabupaten Lombok Timur, yaitu Desa Obel-obel, Belanting dan Sambelia.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Gili Sulat adalah :

* mencegah dan menghindari kerusakan fisik terhadap terumbu karang, hutan bakau dan lamun;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

8. Kawasan lindung Pantura Sumbawa dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah ketebalan dan kepadatan hutan bakau Rhizophora yang tinggi, hamparan terumbu karang (terutama di sebelah barat pulau) dengan kondisi baik sampai sedang, Keberadaan mangrove yang disekitarnya terdapat tambak yang perlu dipertahankan antara lain terdapat di Labuhan Mapin, Labuhan Bajo, Pukat dan Teluk Badas. Selain itu keberadaan hutan dikawasan darat perlu dilindungi untuk menghindari terjadinyabencana alam terutama pada pulau-pulau kecil yang ada di kaasan ini yaitu pulau Panjang, P.Namo, P.Kalong, P.Saring, P.Air Tawar dan P.Moyo.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Pantura Sumbawa adalah :

* mencegah dan menghindari kerusakan fisik terhadap terumbu karang, hutan bakau dan lamun;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

9. Kawasan lindung Teluk Saleh dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah hamparan terumbu karang dan ekosistem hutan bakau dan hamparan padang lamun yang merupakan daerah kritis, dan daerah terlindung yang potensial untuk pengembangan budidaya laut, Untuk kawasan lindung pada terumbukarang, diatasnya boleh dimanfaatkan untuk aktivitas wisata seperti renang, snorkling dan diving, selama kegiatan ini tidak mengganggu kelangsungan hidup terumbu karang tersebut.
Sedangkan mangrove yang disekitarnya terdapat budidaya air payau (tambak) keberadaan mangrove harus tetap dipertahankan terutama yang terdapat di daerah Labuhan Sawo, Labuhan Kuris, Labuhan Sangoro, Teluk Santong Labuhan Bontong, dan Labuhan Aji. Selain itu keberadaan hutan dikawasan darat perlu dilindungi untuk menghindari terjadinya bencana alam terutama pada pulau-pulau kecil yang ada di kawasan ini antara lain pada P. Liang, P.Ngali, P.Rakit, P.Satonda, P. Moyo.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung Teluk Saleh adalah :

* mencegah dan menghindari kerusakan fisik terhadap terumbu karang, hutan bakau dan lamun;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menata budidaya biota laut (rumput laut dan kerang mutiara) sesuai dengan kondisi oseanografi, bentuk teluk, luas kawasan, teknik budidaya dan kualitas air;
* melakukan pengaturan antar aktifitas yang berkepentingan.

10. Kawasan lindung Teluk Sanggar dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah hamparan ekosistem hutan mangrove dan hutan yang ada di darat terutama hutan liundung yang ada sekitar gunung Tambora. Untuk kawasan lindung pada kawasan mangrove Sedangkan mangrove yang disekitarnya terdapat budidaya air payau (tambak) keberadaan mangrove harus tetap dipertahankan terutama yang terdapat di daerah sekitar gunung Tambora.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Teluk Sanggar adalah :

* mencegah dan menghindari kerusakan fisik terhadap terumbu karang, hutan bakau dan lamun;
* mmencegah dan menghindari kerusakan fisik terhadap hutan mangrove;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

11. Kawasan lindung Teluk Cempi dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah ketebalan dan kepadatan hutan bakau Rhizophora yang tinggi, terutama yang ada disekitar muara sungai di ujung Teluk Cempi. Batas kawasan ditentukan pada jarak aman bagi komunitas hutan mangrove terutama yang ada di Mbawi dan Labuhan Jambu. Selain itu keberadaan hutan yang ada dikawasan darat perlu dilindungi untuk menghidari terjadinya longsor terutama disekitar pantai Lakey.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Teluk Cempi adalah :

* mencegah dan menghindari kerusakan fisik terhadap terumbu karang, hutan bakau dan lamun;
* mmencegah dan menghindari kerusakan fisik terhadap hutan mangrove;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

12. Kawasan lindung Teluk Waworada dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah hamparan terumbu karang dengan kondisi baik, ekosistem hutan bakau dan hamparan padang lamun yang merupakan daerah kritis, dan daerah terlindung yang potensial untuk pengembangan budidaya laut.
A. Arahan Pemanfaatan Kawasan Lindung
Kawasan lindung bertujuan melindungi ekosistem yang dianggap perlu dijaga keberadaannya untuk kelangsungan hidup biota yang terdapat di kawasan pesisi, laut dan pulau-pulau kecil, serta ekosistem yang mempunyai kekhasan habitat atau biotanya. Berdasarkan fungsi, peranan dan strategi penataan ruang ekosistem, maka penataan ruang kawasan lindung diarahkan pada hal-hal sebagai berikut :

* Keberadaan ekosistem terumbu karang, hutan bakau, padang lamun, dan ekosistem kritis (nursery ground dan spawning ground).
* Kondisi terumbu karang (persen tutupan dan luasan), ketebalan dan kepadatan hutan bakau, serta kondisi padang lamun (persen tutupan dan luasan).
* Keberadaan biota yang endemik, unik, khas dan indah.

Pesisir dan laut Nusa Tenggara Barat mempunyai hamparan ekosistem terumbu karang, hutan bakau dan padang lamun di sekeliling Nusa Tenggara Barat. Namun demikian, arahan penataan ruang kawasan lindung yang sesuai dengan strategi penataan ditentukan pada 15 kawasan lindung, yaitu:

* Kawasan Lindung Gili Indah (Gili Terawangan, Gili Meno dan Gili Air),
* Kawasan Lindung Gili Gede dan Sekitarnya (Labuhan Poh),
* Kawasan Lindung Teluk Sepi (Buwun Mas/Sekotong),
* Kawasan Lindung Kuta dan Sekitarnya (Tanjung Tampa - Teluk Ayang),
* Kawasan Lindung Teluk Ekas dan Teluk Sereweh,
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung terutama disekitar Sondo, Laju, Doro O?o dan Waworada adalah :
* mencegah kerusakan fisik terumbu karang, hutan bakau dan padang lamun;
* mencegah dan menghindari kerusakan fisik terhadap hutan mangrove;
* menata budidaya biota laut (rumput laut dan kerang mutiara) sesuai dengan kondisi oseanografi, bentuk teluk, luas kawasan, teknik budidaya dan kualitas air;
* melakukan pengaturan antar aktifitas yang berkepentingan.
13. Kawasan lindung Teluk Bima dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah ketebalan dan kepadatan hutan mangrove yang tinggi, terutama yang ada disebeleh timur pantai Lawata dan diujung Teluk Bima. Batas kawasan ditentukan pada jarak aman bagi komunitas hutan mangrove terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Teluk Bima adalah :

* mencegah dan menghindari kerusakan fisik terhadap hutan mangrove
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

14. Kawasan lindung Teluk Sape dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah ketebalan dan kepadatan hutan mangrove serta keanekaragaman ikan karang yang tinggi, hamparan padang lamun dan daerah kritis. Batas kawasan ditentukan pada jarak aman bagi komunitas hutan bakau dan terumbu karang terluar terhadap tekanan faktor luar yang dipengaruhi oleh kondisi oseanografi, yaitu pada daerah disekitar P. Sangiang dan yang ada di wilayah darat yang ada di utara kawasan ini.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada Kawasan Lindung Teluk Sape adalah :

* mencegah kerusakan fisik terumbu karang, hutan bakau dan padang lamun;
* mencegah dan menghindari kerusakan fisik terhadap hutan mangrove;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.
15. Kawasan Maluk dan Sekitarnya
Kriteria yang dipertimbangkan antara lain adalah keberadaan mangrove dan terumbu karang. Batas kawasan ditentukan pada jarak aman bagi ekosistem mangrove dan terumbu karang terutama yang berada di desa Beru dan Belo.
Arahan yang perlu diperhatikan untuk mencegah kerusakan pada kawasan lindung Maluk adalah :
* mencegah kerusakan fisik terumbu karang, hutan bakau dan padang lamun;
* mencegah dan menghindari kerusakan fisik terhadap hutan mangrove;
* menjaga keseimbangan ekosistem di dalam kawasan;
* menghindari pencemaran lingkungan dalam kawasan.

B. Arahan Pengembangan Kawasan Budidaya/Kawasan Pemanfaatan
Kawasan ?budidaya? yang dimaksud sesuai dengan istilah di dalam Undang-Undang Nomor 24 Tahun 1992 tentang Penataan Ruang adalah termasuk kawasan laut untuk kegiatan perikanan tangkap. Istilah kawasan ?budidaya? ini di masa mendatang perlu direvisi ulang karena istilah budidaya dalam pertanian termasuk perikanan adalah suatu kegiatan yang dimulai dengan kegiatan menanam, memelihara dan kemudian pemanenan. Dengan demikian, bila kawasan ?budidaya? sesuai dengan pengertian pertanian tidak termasuk kawasan laut perikanan tangkap di ruang laut dan kawasan hutan produksi di ruang daratan.
Di pesisir dan laut Nusa Tenggara Barat, kawasan ?budidaya? terdapat di pesisir p. Lombok bagian barat, bagian selatan dan bagian timur, sedangkan daratan pesisir bagian utara sebaiknya dilakukan kegiatan penghijauan maupun perkebunan, atau dapat pula sebagai kawasan penyangga pengembangan infrastrukur yang menopang kegiatan di kawasan lindung. Sedangkan di p. Sumbawa kegiatan budidaya terdapat diperairan utara, barat dan sebagian perairan p.sumbawa bagian selatan dan timur.
Dalam rangka penataan ruang wilayah pesisir dan laut Nusa Tenggara Barat, pengembangan pada kawasan ?budidaya? diarahkan pada dua kegiatan utama di pesisir dan laut, yaitu pengembangan pariwisata dan perikanan.

1. Arahan Pengembangan Pariwisata
Sebagian besar kawasan pariwisata terdapat di kawasan pesisir. Pengembangan pariwisata di pesisir dan laut Nusa Tenggara Barat diarahkan pada pariwisata bahari yang sangat mengandalkan pada kelestarian dan keindahan alam pantai dan laut. Untuk kegiatan turunan dari kegiatan pariwisata seperti, hotel, restoran, perdagangan dan pengangkutan harus serasi dengan upaya menjaga kelestarian alam pesisir dan laut tersebut.
Obyek wisata di pesisir dan laut Nusa Tenggara Barat adalah menjual keunikan dan keaslian alam pesisir dan laut dengan kegiatan-kegiatan, seperti berjemur, berenang, menyelam, snorkling dan selancar. Dengan demikian, pembangunan hotel dan restoran diupayakan yang menyatu dengan konsep ?alam? dan segala aktivitasnya baik wisata (menyelam, berenang dan lain-lain), transportasi (laut dan darat), serta limbah (limbah hotel, limbah restoran dan sampah) dikelola secara baik untuk menghindari dampak negatif terhadap lingkungan.
Dari 18 kawasan pengembangan kelautan dan perikanan yan terdapat di NTB, 16 kawasan diantaranya merupakan kawasan yang diarahkan sebagai kawasan pariwisata yaitu :

* KAWASAN GILI INDAH (Gili Air, Meno dan Terawangan)
* KAWASAN GILI GEDE dan Sekitarnya
* KAWASAN TELUK SEPI dan Sekitarnya
* KAWASAN KUTA dan Sekitarnya
* KAWASAN TELUK EKAS DAN TELUK SEREWEH dan Sekitarnya
* KAWASAN GILI SULAT dan Sekitarnya
* KAWASAN SENGGIGI dan Sekitarnya
* KAWASAN PANTURA KABUPATEN SUMBAWA dan Sekitarnya
* KAWASAN TELUK SALEH dan Sekitarnya (P.Liang, P.Ngali, P.Rakit, P.Satonda)
* KAWASAN TELUK CEMPI dan Sekitarnya
* KAWASAN TELUK WAWORADA dan Sekitarnya (Sondo, Laju, Doro O’o, Waworada)
* KAWASAN TELUK BIMA dan Sekitarnya (Pantai Timur Lawata, Talabiu)
* KAWASAN TELUK SAPE dan Sekitarnya (P.Sangiang)
* KAWASAN MALUK dan Sekitarnya (Beru dan Belo)

2. Arahan Pengembangan Perikanan
Sumberdaya perikanan Nusa Tenggara Barat merupakan salah satu sumberdaya hayati yang cukup menonjol selain sektor pertanian dan peternakan. Sumberdaya perikanan dibedakan berdasarkan aktivitas, yaitu sumberdaya perikanan budidaya dan perikanan tangkap. Aktivitas perikanan budidaya yang menonjol di Nusa Tenggara Barat adalah rumput laut, tambak udang/bandeng dan kerang mutiara. Sedangkan aktivitas perikanan tangkap yang utama antara lain penangkapan cumi-cumi, cakalang, ekor kuning, tongkol, ikan hias dan nener.
Pemanfaatan sumberdaya perikanan di Nusa Tenggara Barat belum bersifat terpadu (integral) dan menyeluruh (holistik) dengan mengedepankan prinsip-prinsip pelestarian sumberdaya dan pemanfaatan lestari. Hal ini terlihat di beberapa daerah penangkapan ikan di perairan pantai yang telah mengalami intensitas penangkapan yang tinggi. Arahan pengembangan perikanan disusun berdasarkan arahan kebijakan dan strategi pengelolaan dengan memperhatikan beberapa kepentingan dan isu masyarakat lokal maupun nasional. Kepentingan tersebut meliputi hal-hal sebagai berikut :

* Sumberdaya perikanan pantai telah mengalami degradasi yang sangat serius sehingga dapat menyebabkan penurunan produksi.
* Degradasi sumberdaya perikanan tersebut sangat mempengaruhi kelangsungan dan kualitas hidup masyarakat pesisir yang hidupnya sangat tergantung pada sumberdaya tersebut.
* Masyarakat lokal sebagai komunitas yang paling berkepentingan perlu mendapat kewenangan pengaturan dalam pengelolaan sumberdaya perikanan.
* Sehubungan dengan adanya otonomi daerah, pembagian kewenangan harus jelas antara institusi baik di tingkat daerah maupun tingkat pusat.
Dengan memperhatikan kepentingan-kepentingan tersebut di atas, maka pengembangan perikanan di Nusa Tenggara Barat diarahkan pada dua kegiatan pokok yaitu:
* Perikanan Budidaya
* Perikanan Tangkap.

Kegiatan budidaya diarahkan untuk memanfaatkan kondisi dan luas areal perairan laut dan payau yang cukup besar dan belum dimanfaatkan. Kegiatan budidaya laut diarahkan untuk budidaya rumput laut, mutiara dan ikan dasar / karang. Sedangkan budidaya payau diarahkan untuk mengembangkan budidaya udang dan kepiting bakau.
Untuk kegiatan perikanan tangkap diarahkan pada pengembangan teknologi penangkapan di perairan laut yang umumnya menyebar hingga 6 mil laut untuk tujuan penangkapan cumi-cumi di Selat Alas dan ikan-ikan pelagis diperairan utara dan selatan NTB serta wilayah perairan Selat Sape dan Selat Lombok.
3. Arahan Pengembangan Pulau-Pulau Kecil.
Skenario pengembangan pulau-pulau kecil di NTB diarahkan untuk dapat mengoptimalkan pemanfaatan pulau-pulau kecil yang memiliki peluang usaha yang prospektif untuk pengembangan pariwisata bahari, budidaya laut, perlindungan biota dan ekosistem serta pengembangan usaha?usaha ekonomi produktif bagi masyarakat sekitar pulau. Selain itu, dapat menjadi Potensi kerjasama pengelolaan kawasan antara Pemerintah Daerah dengan pihak swasta untuk peningkatan penerimaan daerah, terutama pada pulau-pulau kecil yang saat ini belum tergarap.
Pengembangan pulau-pulau kecil tersebut, diarahkan untuk mendukung upaya-upaya revitalisasi fungsi dan perkuatan kelembagaan lokal (awig-awig dan sejenisnya) serta memberdayakan sosial ekonomi masyarakat di pulau-pulau kecil melalui pengembangkan dan perkuatan lembaga keuangan mikro dan memperluas jaringan ekonomi.
Kawasan pulau-pulau kecil di pesisir dan laut Nusa Tenggara Barat, dikelompokkan kedalam 7 gugusan pulau-pulau, yaitu 4 gugusan berada disekitar P. Lombok dan 3 gugusan berada disekitar pulau Sumbawa yaitu :

* Gugusan Gili Indah (Air, Meno, Trawangan); diarahkan sebagai kawasan wisata bahari dengan jumlah kunjungan wisata tertinggi di NTB
* Gugusan Gili Gede (Sekotong); diarahkan sebagai kawasan wisata bahari dan lokasi budidaya laut (mutiara) yang diminati investor asing (PMA)
* Gugusan Gili Sulat, Gili Lawang, gili Lampu(Lotim); diarahkan sebagai kawasan konservasi laut daerah (KKLD) dan potensial sebagai tempat budidaya mutiara
* Gugusan gili-gili Indah di Lombok Timur,diarahkan sebagai kawasan wisata bahari dan lokasi budidaya laut (mutiara) yang diminati investor asing (PMA)
* Gugusan Pulau Moyo, diarahkan sebagai kawasan wisata bahari eksklusif dan taman nasional laut
* Gugusan Pulau Panjang dan sekitarnya (Sumbawa); diarahkan sebagai kawasan budidaya laut
* Gugusan pulau Sangiang (Bima) dan Pulau Satonda (Dompu) diarahkan untuk dikembangkan sebagai kawasan wisata bahari dan kawasan konservasi

Copyright 2006 Codesign Indonesia, All rights reserved
Dafta Pustaka : http://www.bappedantb.org/index.php?act=alasutan.main
Ads by Google
New & Used Video Games
Best Collection in Singapore Xbox360, PS3, PSP, Wii, NDS, GBA
www.silverynote.com
Kota Bharu Hotels
Compare All and Book Instantly Save up to 75% on Kota Bharu Hotels
www.Hotelsio.com/Kota-Bharu-Hotels
Yulia Beach Bali
Find Deals, Read Reviews from Real People. Get the Truth. Then Go.
www.TripAdvisor.com
Ternate Summary
Full Encyclopedia Entry 5 Pages of Information
BookRags.com
Read More......

Jumat, 08 Mei 2009

Mikroba Berusia 1.43 Miliar Tahun, Bukti Awal Kehidupan dari Dasar Laut


By. Fahry Purbakala. Pecinta Lautan

Gambar 1. Penampang melintang fosil mikroba-mikroba berusia 1.43 miliar tahun yang ditemukan di China (Timothy Kusky/Gondwana Research)

Kehidupan mungkin bermula dari dasar laut. Salah satu buktinya dapat dipelajari dari fosil Mikroba berumur 1,43 miliar tahun.

Fosil mikroba itu disebut penghisap asap hitam karena ditamukan para peneliti pada sebuah tambang di China. Organisme renik tersebut memiliki karakter tubuh yang identik dengan archaea dan bakteri yang saat ini masih hidup di dasar laut. Hanya saja hewan purba tersebut telah muncul semiliar tahun lebih tua.

“Mikroba di dasar laut adalah sisa-sisa jenis kehidupan tertua di planet bumi,” ajar Timothy Kucky, seorang geolog dari Universitas Saint Louis yang terlibat dalam penelitan fosil mikroba tersebut.
Ia menjalaskan fosil tersebut memberi petunjuk bahwa kehidupan mungkin mulai berkembang dekat gelembung-gelembung hidratermal di dasar laut dan bukan di laut dangkal seperti diyakini selama ini. Organisme tertua itu hidup di kerak bumi yang merekah sehingga perairan di dekatnya kaya dengan mineral yang muncul dari dalam perut bumi dan panasnya mencapai 400 derajat Celcius.

Beberapa orang menyebut organisme ini sebagai bentuk kehidupan di lingkungan yang ekstrim dan benar-benar barbeda dengan kondisi Iingkungan di permukaan bumi saat ini, Bakteri yang tidak mernbutuhkan sinar matahari dan aksigen itu hidup di dalam cerobong-cerobong gas yang terbentuk di sekitarnya dan memanfaatkan kandungan mineral yang mengendap.

Cerobong-cerobong padat yang dapat terbentuk hingga 15 meteran itu sangat langka karena mudah roboh hanya dengan sedikit tekanan rneskipun dapat terbentuk kembali. umur dan ukuran cerobong bisa dijadikan sebagai petunjuk untuk mengetehui bagaimana hidrotermal purba terbentuk dan kehidupan bisa muncul di sana.

“Mereka memberitahukan kepada kami kehidupan yang terbentuk sejak masa lalu yang begitu lama, namun dari mana mereka berasal masih penuh tanda tanya,” ujar Ed Mathez, geolog dan kurator Museum Sejarah Nasional Amerika di New York, AS, mengomentari temuan ini, Meskipun fosil mikroba tertua belum bisa menyimpulkan asal-usul kehidupan di Bumi, setidaknya Para peneliti dapat mengetahui bentuk kehidupan di awal pembentukan Bumi.

Sumber: Kompas CyberMedia Senin, 06 Agustus 2007
Read More......

Rabu, 06 Mei 2009

OUT OF BOX : INOVASI TIADA HENTI


by, fahry streesss

Saat ini, saya memulai thesis yang agak berat. Keluar dari lingkup basic keilmuan. Menyelami dunia kanker/tumor yang asing. Ilmu perikanan kadang terlalu jauh untuk disandingkan dengan ilmu kedokteran manusia. Ilmu kimia senyawa yang juga luput saya dalami kini mesti dirancah dengan paksa. Isolasi dan identifikasi senyawa yang berpotensi sebagai antitumor pada rumput laut Sargassum sp. Judul yang rada aneh buat disiplin perikanan dan budidaya perairan. Sebuah tantangan hebat.

Tetapi, dari hikmah ini, saya kira sebuah entry point baru bagi khasanah keilmuan yang mahal itu. Saya harus membayar mahal eksplorasi ini dengan segala keseriusan yang ada. Mencoba berpikir diluar kotak (out of box) kebiasaan dan jalur aman.

Kiranya, disini saya telah melangkah jauh dan bertaruh dengan sadar untuk mendapatkan ilmu baru dan hebat dari dunia berbeda.
Berangkat dari kenekadan ini, saya yakin ada skenario lain untuk berkembang dan mekar dimasa depan yang unik aneh ini. Ini kebesaran Tuhan untuk ujian kehidupan dan pengharapan baru, menggagas ide indah dan mimpi kehebatan.

Saat ini, waktu tepat bagi saya untuk memberikan pujian dan semangat besar pada diri sendiri agar semua bisa berjalan dengan sebaiknya. Motivasi diri adalah pompa bensin pengisi tangki bahan bakar kemajuan. Untuk menyambung lebih jauh rute penempuhan hidup singkat kita.

Pada akhirnya, saya mesti melangkah lagi meneruskan sisa waktu dan menuntaskan ending mimpi menjadi nyata adanya. Inovasi tiada henti. Mengalir sampai jauh. Melompat jauh keluar lingkaran diri ke ruang yang lebih besar.

Sesungguhnya, tiada badai yang abadi. Pasti mereda dan berakhir jua.

Lets GO.

What You A Comment ?
Read More......

MISTERY KEADAAN LANGIT


BY. RIEM MAREWO

From Wikipedia, the free encyclopedia
(Redirected from Milky Way Galaxy)


Milky Way

The Milky Way, sometimes called simply the Galaxy, is the galaxy in which our Solar System is located. It is a barred spiral galaxy that is part of the Local Group of galaxies. It is one of billions of galaxies in the observable universe.
Its name is a translation of the Latin Via Lactea, which derives from the Greek Γαλαξίας (Galaxias or Galaxiases), both of which refer to the pale band of light formed by the galactic plane as seen from Earth (see etymology of galaxy). Some sources hold that, strictly speaking, the term Milky Way should refer exclusively to the band of light that the galaxy forms in the night sky, while the galaxy as an astrophysical whole should receive the full name Milky Way Galaxy, or alternatively the Galaxy.[4][5][6] However, it is unclear how widespread this convention is, and the term Milky Way is routinely used in either context.

Milky Way Galaxy

Gambar 1. Infrared image of the core of the Milky Way galaxy

Observation data
Type
SBbc (barred spiral galaxy)

Diameter 100,000 light years
Thickness 1,000 light years (stars)
Number of stars 200 to 400 billion
Oldest known star 13.2 billion years[1]

Mass 5.8×1011 M☉

Sun's distance to galactic center
26,000 ± 1,400 light-years
Sun's galactic rotation period
220 million years (negative rotation)
Spiral pattern rotation period
50 million years[2]

Bar pattern rotation period
15 to 18 million years[2]

Speed relative to CMB rest frame
552 km/s[3]


Appearance from Earth
The Milky Way galaxy, as viewed from Earth, itself situated on one of the spiral arms of the galaxy (see Sun's location), appears as a hazy band of white light in the night sky arching across the entire celestial sphere and originating from stars and other material that lie within the galactic plane. The plane of the Milky Way is inclined by about 60° to the ecliptic (the plane of the Earth's orbit), with the North Galactic Pole situated at right ascension 12h 49m, declination +27.4° (B1950) near beta Comae Berenices. The South Galactic Pole is near alpha Sculptoris.
The center of the galaxy is in the direction of Sagittarius, and the Milky Way then "passes" (going westward) through Scorpius,Ara, Norma, Triangulum Australe, Circinus, Centaurus, Musca, Crux, Carina, Vela, Puppis, Canis Major, Monoceros, Orion & Gemini, Taurus, Auriga, Perseus, Andromeda, Cassiopeia,Cepheus & Lacerta, Cygnus, Vulpecula, Sagitta, Aquila, Ophiuchus, Scutum, and back to Sagittarius.

Gambar 2. 360-degree photographic panorama of the galaxy.

Gambar 3. The Milky Way as seen from Death Valley, 2007. This is a panoramicpicture.

The Milky Way looks brightest in the direction of the constellation of Sagittarius, toward the galactic center. Relative to the celestial equator, it passes as far north as the constellation ofCassiopeia and as far south as the constellation of Crux, indicating the high inclination of Earth's equatorial plane and the plane of the ecliptic relative to the galactic plane. The fact that the Milky Way divides the night sky into two roughly equal hemispheres indicates that our Solar System lies close to the galactic plane. The Milky Way has a relatively low surface brightness, making it difficult to see from any urban or suburban location suffering from light pollution.

Size
The stellar disk of the Milky Way galaxy is approximately 100,000 light-years (9.5×1017 km) in diameter, and is believed to be, on average, about 1,000 ly (9.5×1015 km) thick.[7] It is estimated to contain at least 200 billion stars[8] and possibly up to 400 billion stars,[9] the exact figure depending on the number of very low-mass stars, which is highly uncertain. Extending beyond the stellar disk is a much thicker disk of gas. Recent observations indicate that the gaseous disk of the Milky Way has a thickness of around 12,000 ly (1.1×1017 km)—twice the previously accepted value.[10] As a guide to the relative physical scale of the Milky Way, if it were reduced to 100 m in diameter, the Solar System, including the Oort Cloud, would be no more than 2 mm in width.
The Galactic Halo extends outward, but is limited in size by the orbits of two Milky Way satellites, the Large and the Small Magellanic Clouds, whose perigalacticon is at ~180,000 ly (1.7×1018 km).[11] At this distance or beyond, the orbits of most halo objects would be disrupted by the Magellanic Clouds, and the objects would likely be ejected from the vicinity of the Milky way.
Recent measurements by the Very Long Baseline Array (VLBA) have revealed that the Milky Way is much larger than previously thought. The size of our home galaxy is now considered to be roughly similar to that of our largest local neighbour, the Andromeda galaxy. By using the VLBA to measure the apparent shift of far-flung star-forming regions when the Earth is on opposite sides of the Sun, the researchers were able to measure the distance to those regions using fewer assumptions than prior efforts. The newer and more accurate estimate of the galaxy's rotational speed (and in turn the amount of dark matter contained by the galaxy) puts the figure at about 914,000km per hour, significantly higher than the widely accepted value of 792,000km per hour.[12] This in turn implies that the Milky Way has a total mass equivalent to around 3 trillion suns, about 50% more massive than previously thought.[13]

Age
Main articles: Galaxy formation and evolution and nucleocosmochronology
It is extremely difficult to define the age at which the Milky Way formed, but the age of the oldest star in the Galaxy yet discovered, HE 1523-0901, is estimated to be about 13.2 billion years, nearly as old as the Universe itself.[1]
This estimate is based on research by a team of astronomers in 2004 using the UV-Visual Echelle Spectrograph of the Very Large Telescope tomeasure, for the first time, the beryllium content of two stars in globular cluster NGC 6397.[14][citation needed] From this research, the elapsed time between the rise of the first generation of stars in the entire Galaxy and the first generation of stars in the cluster was deduced to be 200 million to 300 million years. By including the estimated age of the stars in the globular cluster (13.4 ± 0.8 billion years), they estimated the age of the oldest stars in the Milky Way at 13.6 ± 0.8 billion years. Based upon this emerging science, the Galactic thin disk is estimated to have been formed between 6.5 and 10.1 billion years ago.

Gambar 4. A green and red Perseid meteor streaks across the sky just below the Milky Way in August 200

Composition and Structure
The Galaxy consists of a bar-shaped core region surrounded by a disk of gas, dust and stars forming four distinct arm structures spiralling outward in alogarithmic spiral shape (see Spiral arms). The mass distribution within the Galaxy closely resembles the Sbc Hubble classification, which is a spiral galaxy with relatively loosely-wound arms.[16] Astronomers first began to suspect that the Milky Way is a barred spiral galaxy in the 1990s[17] rather than an ordinary spiral galaxy. Their suspicions were confirmed by the Spitzer Space Telescope observations in 2005[18] which showed the Galaxy's central bar to be larger than previously suspected. The Milky Way's mass is thought to be about 5.8×1011 solar masses (M☉)[19][20][21] comprising 200 to 400 billion stars. Its integrated absolute visual magnitude has been estimated to be −20.9. Most of the mass of the Galaxy is thought to be dark matter, forming a dark matter halo of an estimated 600–3000 billion M☉ which is spread out relatively uniformly.[21]

Gambar 5. The Milky Way is thought to be a barred spiral galaxy.Messier 109 is one possible analog.[15]

Galactic center
Main article: Galactic Center
The galactic disc, which bulges outward at the galactic center, has a diameter of between 70,000 and 100,000 light-years.[22] The distance from the Sun to the galactic center is now estimated at 26,000 ± 1400 light-years, while older estimates could put the Sun as far as 35,000 light-years from the central bulge.
The galactic center harbors a compact object of very large mass as determined by the motion of material around the center.[23] The intense radio source named Sagittarius A*, thought to mark the center of the Milky Way, is newly confirmed to be a supermassive black hole. For a photo see Chandra X-ray Observatory; Jan. 6, 2003 Most galaxies are believed to have a supermassive black hole at their center.[24]
The Galaxy's bar is thought to be about 27,000 light-years long, running through its center at a 44 ± 10 degree angle to the line between the Sun and the center of the Galaxy. It is composed primarily of red stars, believed to be ancient (see red dwarf, red giant). The bar is surrounded by a ring called the "5-kpc ring" that contains a large fraction of the molecular hydrogen present in the Galaxy, as well as most of the Milky Way's star formation activity. Viewed from the Andromeda Galaxy, it would be the brightest feature of our own galaxy.[25]

Gambar 6. The galactic center in the direction of Sagittarius. The primary stars of Sagittarius are indicated in red.


Gambar 7. Spiral arms : Observed and extrapolated structure of the spiral arms

Each spiral arm describes a logarithmic spiral (as do the arms of all spiral galaxies) with a pitch of approximately 12 degrees. There are believed to be four major spiral arms which all start near the Galaxy's center. These are named as follows, according to the image at right:

colorarm(s)cyan3-kpc and Perseus ArmpurpleNorma and Cygnus Arm (Along with a newly discovered extension)greenScutum-Crux ArmpinkCarina and Sagittarius ArmThere are at least two smaller arms or spurs, including:orangeOrion Arm (which contains our own Solar System and Sun)

Outside of the major spiral arms is the Outer Ring or Monoceros Ring, a ring of stars around the Milky Way proposed by astronomers Brian Yanny andHeidi Jo Newberg, which consists of gas and stars torn from other galaxies billions of years ago.
As is typical for many galaxies, the distribution of mass in the Milky Way Galaxy is such that the orbital speed of most stars in the Galaxy does not depend strongly on its distance from the center. Away from the central bulge or outer rim, the typical stellar velocity is between 210 and 240 km/s.[26] Hence the orbital period of the typical star is directly proportional only to the length of the path traveled. This is unlike the situation within the Solar System, where two-body gravitational dynamics dominate and different orbits are expected to have significantly different velocities associated with them. This difference is one of the major pieces of evidence for the existence of dark matter. Another interesting aspect is the so-called "wind-up problem" of the spiral arms. If one believes that the inner parts of the arms rotate faster than the outer part, then the Galaxy will wind up so much that the spiral structure will be thinned out. But this is not what is observed in spiral galaxies; instead, astronomers propose that the spiral arms form as a result of a matter-density wave emanating from the galactic center. This can be likened to a moving traffic jam on a highway — the cars are all moving, but there is always a region of slow-moving cars. Thus this results in several spiral arms where there are a lot of stars and gas. This model also agrees with enhanced star formation in or near spiral arms; the compressional waves increase the density of molecular hydrogen and protostars form as a result.
Observations presented in 2008 by Robert Benjamin of the University of Wisconsin-Whitewater suggest that the Milky Way possesses only two major stellar arms: the Perseus arm and the Scutum-Centaurus arm. The rest of the arms are minor or adjunct arms.[27]

Halo
The galactic disk is surrounded by a spheroid halo of old stars and globular clusters, of which 90% lie within 100,000 light-years,[28] suggesting a stellar halo diameter of 200,000 light-years. However, a few globular clusters have been found farther, such as PAL 4 and AM1 at more than 200,000 light-years away from the galactic center. While the disk contains gas and dust which obscure the view in some wavelengths, the spheroid component does not. Active star formation takes place in the disk (especially in the spiral arms, which represent areas of high density), but not in the halo. Open clustersalso occur primarily in the disk.

Gambar 8. Artist's conception of the spiral structure of the Milky Way with two major stellar arms and a bar.[27]

Recent discoveries have added dimension to the knowledge of the Milky Way's structure. With the discovery that the disc of the Andromeda Galaxy(M31) extends much further than previously thought,[29] the possibility of the disk of our own Galaxy extending further is apparent, and this is supported by evidence of the newly discovered Outer Arm extension of the Cygnus Arm.[30] With the discovery of the Sagittarius Dwarf Elliptical Galaxy came the discovery of a ribbon of galactic debris as the polar orbit of Sagittarius and its interaction with the Milky Way tears it apart. Similarly, with the discovery of the Canis Major Dwarf Galaxy, it was found that a ring of galactic debris from its interaction with the Milky Way encircles the galactic disk.
On January 9, 2006, Mario Jurić and others of Princeton University announced that the Sloan Digital Sky Survey of the northern sky found a huge and diffuse structure (spread out across an area around 5,000 times the size of a full moon) within the Milky Way that does not seem to fit within current models. The collection of stars rises close to perpendicular to the plane of the spiral arms of the Galaxy. The proposed likely interpretation is that a dwarf galaxy is merging with the Milky Way. This galaxy is tentatively named the Virgo Stellar Stream and is found in the direction of Virgo about 30,000 light-years away.

Environment
The Milky Way and the Andromeda Galaxy are a binary system of giant spiral galaxies belonging to a group of 50 closely bound galaxies known as theLocal Group, itself being part of the Virgo Supercluster.
Two smaller galaxies and a number of dwarf galaxies in the Local Group orbit the Milky Way. The largest of these is the Large Magellanic Cloud with a diameter of 20,000 light-years. It has a close companion, the Small Magellanic Cloud. The Magellanic Stream is a peculiar streamer of neutral hydrogengas connecting these two small galaxies. The stream is thought to have been dragged from the Magellanic Clouds in tidal interactions with the Galaxy. Some of the dwarf galaxies orbiting the Milky Way are Canis Major Dwarf (the closest), Sagittarius Dwarf Elliptical Galaxy, Ursa Minor Dwarf, Sculptor Dwarf, Sextans Dwarf, Fornax Dwarf, and Leo I Dwarf. The smallest Milky Way dwarf galaxies are only 500 light-years in diameter. These include Carina Dwarf, Draco Dwarf, and Leo II Dwarf. There may still be undetected dwarf galaxies, which are dynamically bound to the Milky Way. Observations through the zone of avoidance are frequently detecting new distant and nearby galaxies. Some galaxies consisting mostly of gas and dust may also have evaded detection so far.
In January 2006, researchers reported that the heretofore unexplained warp in the disk of the Milky Way has now been mapped and found to be a ripple or vibration set up by the Large and Small Magellanic Clouds as they circle the Galaxy, causing vibrations at certain frequencies when they pass through its edges.[39] Previously, these two galaxies, at around 2% of the mass of the Milky Way, were considered too small to influence the Milky Way. However, by taking into account dark matter, the movement of these two galaxies creates a wake that influences the larger Milky Way. Taking dark matter into account results in an approximately twenty-fold increase in mass for the Galaxy. This calculation is according to a computer model made by Martin Weinberg of the University of Massachusetts, Amherst. In this model, the dark matter is spreading out from the galactic disc with the known gas layer. As a result, the model predicts that the gravitational effect of the Magellanic Clouds is amplified as they pass through the Galaxy.

Gambar 9. Broad infrared view of our Milky Way Galaxy from the Spitzer Space Telescope created from more than 800,000 frames. This is the most detailed infrared picture of our galaxy to date.

Current measurements suggest the Andromeda Galaxy is approaching us at 100 to 140 kilometers per second. The Milky Way may collide with it in 3 to 4 billion years, depending on the importance of unknown lateral components to the galaxies' relative motion. If they collide, individual stars within the galaxies would not collide, but instead the two galaxies will merge to form a single elliptical galaxy over the course of about a billion years.[40]

Velocity
In the general sense, the absolute velocity of any object through space is not a meaningful question according to Einstein's special theory of relativity, which declares that there is no "preferred" inertial frame of reference in space with which to compare the Galaxy's motion. (Motion must always be specified with respect to another object.)
Astronomers believe the Milky Way is moving at approximately 630 km per second relative to the local co-moving frame of reference that moves with the Hubble flow.[44] If the Galaxy is moving at 600 km/s, Earth travels 51.84 million km per day, or more than 18.9 billion km per year, about 4.5 times its closest distance from Pluto. The Milky Way is thought to be moving in the direction of the Great Attractor. The Local Group (a cluster of gravitationally bound galaxies containing, among others, the Milky Way and the Andromeda galaxy) is part of a supercluster called the Local Supercluster, centered near the Virgo Cluster: although they are moving away from each other at 967 km/s as part of the Hubble flow, the velocity is less than would be expected given the 16.8 million pc distance due to the gravitational attraction between the Local Group and the Virgo Cluster.[45]
Another reference frame is provided by the cosmic microwave background (CMB). The Milky Way is moving at around 552 km/s[3]with respect to the photons of the CMB, toward 10.5 right ascension, -24° declination (J2000 epoch, near the center of Hydra). This motion is observed by satellites such as the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe(WMAP) as a dipole contribution to the CMB, as photons in equilibrium in the CMB frame get blue-shifted in the direction of the motion and red-shifted in the opposite direction.[citation needed]

Gambar 10. Galaxy rotation curve for the Milky Way. Vertical axis is speed of rotation about the galactic center. Horizontal axis is distance from the galactic center in kpcs. The sun is marked with a yellow ball. The observed curve of speed of rotation is blue. The predicted curve based upon stellar mass and gas in the Milky Way is red. Scatter in observations roughly indicated by gray bars. The difference is due to dark matteror perhaps a modification of the law of gravity.[41][42][43]

The galaxy rotates about its center according to its galaxy rotation curve as shown in the figure. The discrepancy between the observed curve (relatively flat) and the curve based upon the known mass of the stars and gas in the Milk Way (decaying cure) is attributed to dark matter.[46]

History
Etymology and beliefs

Main articles: List of names for the Milky Way and Milky Way (mythology)
There are many creation myths around the world which explain the origin of the Milky Way and give it its name. The English phrase is a translation from Greek Γαλαξίας, Galaxias, which is derived from the word for milk (γάλα, gala). This is also the origin of the word galaxy. Indians call it the Akashganga or a celestial form of the holy river, Ganga.[citation needed] In Greek myth, the Milky Way was caused by milk spilt by Hera when suckling Heracles.
The term Milky Way first appeared in English literature in a poem by Chaucer.

"See yonder, lo, the Galaxyë
Which men clepeth the Milky Wey,
For hit is whyt."

—Geoffrey Chaucer, Geoffrey Chaucer The House of Fame, c. 1380.[47]
In a large area from Central Asia to Africa, the name for the Milky Way is related to the word for straw. It has been claimed that this was spread by Arabs who in turn borrowed the word from Armenian.[48] In several Uralic, Turkic languages, Fenno-Ugric languages and in the Baltic languages the Milky Way is called the "Birds' Path". The Chinese name "Silver River" (銀河) is used throughout East Asia, including Korea and Japan. An alternative name for the Milky Way in ancient China, especially in poems, is "Heavenly Han River"(天汉). In Japanese, "Silver River" (銀河 ginga) means galaxies in general and the Milky Way is called the "Silver River System" (銀河系 gingakei) or the "River of Heaven" (天の川 Amanokawa or Amanogawa). InSwedish, it is called Vintergatan, or "Winter Street", because the stars in the belt were used to predict time of the approaching winter.[citation needed]

Discovery

As Aristotle (384-322 BC) informs us in Meteorologica (DK 59 A80), the Greek philosophers Anaxagoras (ca. 500–428 BC) and Democritus (450–370 BC) proposed that the Milky Way might consist of distant stars. However, Aristotle himself believed the Milky Way to be caused by "the ignition of the fiery exhalation of some stars which were large, numerous and close together" and that the "ignition takes place in the upper part of the atmosphere, in the region of the world which is continuous with the heavenly motions."[49] The Arabian astronomer, Alhazen (965-1037 AD), refuted this by making the first attempt at observing and measuring the Milky Way's parallax,[50] and he thus "determined that because the Milky Way had no parallax, it was very remote from the earth and did not belong to the atmosphere."[51]

Gambar 11. The shape of the Milky Way as deduced from star counts by William Herschel in 1785; the Solar System was assumed near center

The Persian astronomer, Abū Rayhān al-Bīrūnī (973-1048), proposed the Milky Way galaxy to be a collection of countless nebulous stars.[52] Avempace(d. 1138) proposed the Milky Way to be made up of many stars but appears to be a continuous image due to the effect of refraction in the Earth's atmosphere.[49] Ibn Qayyim Al-Jawziyya (1292-1350) proposed the Milky Way galaxy to be "a myriad of tiny stars packed together in the sphere of the fixed stars" and that that these stars are larger than planets.[53]
Actual proof of the Milky Way consisting of many stars came in 1610 when Galileo Galilei used a telescope to study the Milky Way and discovered that it was composed of a huge number of faint stars.[54] In a treatise in 1755, Immanuel Kant, drawing on earlier work by Thomas Wright, speculated (correctly) that the Milky Way might be a rotating body of a huge number of stars, held together by gravitational forces akin to the Solar System but on much larger scales. The resulting disk of stars would be seen as a band on the sky from our perspective inside the disk. Kant also conjectured that some of the nebulae visible in the night sky might be separate "galaxies" themselves, similar to our own.[55]
The first attempt to describe the shape of the Milky Way and the position of the Sun within it was carried out by William Herschel in 1785 by carefully counting the number of stars in different regions of the sky. He produced a diagram of the shape of the Galaxy with the Solar System close to the center.

Gambar 12. Photograph of the "Great Andromeda Nebula" from 1899, later identified as the Andromeda Galaxy

n 1845, Lord Rosse constructed a new telescope and was able to distinguish between elliptical and spiral-shaped nebulae. He also managed to make out individual point sources in some of these nebulae, lending credence to Kant's earlier conjecture.[56]
In 1917, Heber Curtis had observed the nova S Andromedae within the "Great Andromeda Nebula" (Messier object M31). Searching the photographic record, he found 11 more novae. Curtis noticed that these novae were, on average, 10 magnitudes fainter than those that occurred within our galaxy. As a result he was able to come up with a distance estimate of 150,000 parsecs. He became a proponent of the "island universes" hypothesis, which held that the spiral nebulae were actually independent galaxies.[57] In 1920 the Great Debate took place between Harlow Shapley and Heber Curtis, concerning the nature of the Milky Way, spiral nebulae, and the dimensions of the universe. To support his claim that the Great Andromeda Nebula was an external galaxy, Curtis noted the appearance of dark lanes resembling the dust clouds in the Milky Way, as well as the significant Doppler shift.[58]
The matter was conclusively settled by Edwin Hubble in the early 1920s using a new telescope. He was able to resolve the outer parts of some spiral nebulae as collections of individual stars and identified some Cepheid variables, thus allowing him to estimate the distance to the nebulae: they were far too distant to be part of the Milky Way.[59] In 1936 Hubble produced a classification system for galaxies that is used to this day, the Hubble sequence.[60]


References
1.a b Frebel, Anna (2007). "Discovery of HE 1523-0901, a Strongly r-Process-enhanced Metal-poor Star with Detected Uranium". The Astrophysical Journal 660: L117. doi:10.1086/518122. arΧiv:astro-ph/0703414.
2.a b Bissantz, Nicolai (2003). "Gas dynamics in the Milky Way: second pattern speed and large-scale morphology". Monthly Notices of the Royal Astronomical Society 340: 949. doi:10.1046/j.1365-8711.2003.06358.x. arΧiv:astro-ph/0212516.
3.a b Kogut, A.; Lineweaver, C.; Smoot, G. F.; Bennett, C. L.; Banday, A.; Boggess, N. W.; Cheng, E. S.; de Amici, G.; Fixsen, D. J.; Hinshaw, G.; Jackson, P. D.; Janssen, M.; Keegstra, P.; Loewenstein, K.; Lubin, P.; Mather, J. C.; Tenorio, L.; Weiss, R.; Wilkinson, D. T.; Wright, E. L. (1993). "Dipole Anisotropy in the COBE Differential Microwave Radiometers First-Year Sky Maps". Astrophysical Journal 419: 1.doi:10.1086/173453. Retrieved on 2007-05-10.
4.Freedman, Roger A.; Kaufmann, William J. (2007). Universe. WH Freeman & Co.. p. 605. ISBN 0-7167-8584-6.
5."Galaxies — Milky Way Galaxy". Encyclopedia Britannica. 19. Encyclopedia Britannica, Inc.. 1998. pp. p. 618.
6.Pasachoff, Jay M. (1994). Astronomy: From the Earth to the Universe. Harcourt School. p. 500. ISBN 0-03-001667-3.
7.Christian, Eric; Samar, Safi-Harb. "How large is the Milky Way?". Retrieved on 2007-11-28.
8.Sanders, Robert (January 9, 2006). "Milky Way galaxy is warped and vibrating like a drum". UCBerkeley News. Retrieved on 2006-05-24.
9.Frommert, H.; Kronberg, C. (August 25, 2005). "The Milky Way Galaxy". SEDS. Retrieved on 2007-05-09.
10."Milky Way fatter than first thought". The Sydney Morning Herald. Australian Associated Press. 2008-02-20. Retrieved on 2008-04-24.
11.Connors, et al. (2007). "N-body simulations of the Magellanic stream". Monthly Notices of the Royal Astronomical Society 371: 108. doi:10.1111/j.1365-2966.2006.10659.x. Retrieved on 2007-01-26.
12."Milky Way a Swifter Spinner, More Massive, New Measurements Show". 2009-01-05. Retrieved on 2009-01-20.
13.Ron Cowen (January 5, 2009). "This just in: Milky Way as massive as 3 trillion suns". Society for Science & the Public. Retrieved on 2009-01-14.
14.Del Peloso, E. F. (2005). "The age of the Galactic thin disk from Th/Eu nucleocosmochronology". Astronomy and Astrophysics 440: 1153. doi:10.1051/0004-6361:20053307. arΧiv:astro-ph/0506458.Bibcode: 2005A&A...440.1153D.
15."The Milky Way: A New Galactic Self-Portrait". Planetary Radio. June 23, 2008. Contains an interview with Robert Benjamin and Thomas Dame.
16.Ortwin, Gerhard (2002). "Mass distribution in our Galaxy". Space Science Reviews 100 (1/4): 129–138. doi:10.1023/A:1015818111633. Retrieved on 2007-03-14.
17.Chen, W.; Gehrels, N.; Diehl, R.; Hartmann, D. (1996). "On the spiral arm interpretation of COMPTEL ^26^Al map features". Space Science Reviews 120: 315–316. Retrieved on 2007-03-14.
18.McKee, Maggie (August 16, 2005). "Bar at Milky Way's heart revealed". New Scientist. Retrieved on 2007-05-09.
19.Karachentsev, I. D.; Kashibadze, O. G. (2006). "Masses of the local group and of the M81 group estimated from distortions in the local velocity field". Astrophysics 49 (1): 3–18. doi:10.1007/s10511-006-0002-6.
20.Vayntrub, Alina (2000). "Mass of the Milky Way". The Physics Factbook. Retrieved on 2007-05-09.
21.a b Battaglia, G.; Helmi, A.; Morrison, H.; Harding, P.; Olszewski, E. W.; Mateo, M.; Freeman, K. C.; Norris, J.; Shectman, S. A. (2005). "The radial velocity dispersion profile of the Galactic halo: Constraining the density profile of the dark halo of the Milky Way" (abstract). Monthly Notices of the Royal Astronomical Society 364: 433–442. Retrieved on 2007-05-09.
22.Grant. J.; Lin, B. (2000). "The Stars of the Milky Way". Fairfax Public Access Corporation. Retrieved on 2007-05-09.
23.Mark H. Jones, Robert J. Lambourne, David John Adams (2004). An Introduction to Galaxies and Cosmology. Cambridge University Press. pp. 50–51. ISBN 0521546230.
24.Blandford, R.D. (1999). "Origin and evolution of massive black holes in galactic nuclei". Galaxy Dynamics, proceedings of a conference held at Rutgers University, 8–12 Aug 1998,ASP Conference Series vol. 182.
25.Staff (September 12, 2005). "Introduction: Galactic Ring Survey". Boston University. Retrieved on 2007-05-10.
26.Imamura, Jim (August 10, 2006). "Mass of the Milky Way Galaxy". University of Oregon. Retrieved on 2007-05-10.
27.a b Benjamin, R. A. (2008). "The Spiral Structure of the Galaxy: Something Old, Something New...". Beuther, H.; Linz, H.; Henning, T. (ed.) Massive Star Formation: Observations Confront Theory 387: 375, Astronomical Society of the Pacific Conference Series.
See also Bryner, Jeanna (2008-06-03). "New Images: Milky Way Loses Two Arms". Space.com. Retrieved on 2008-06-04.
28.Harris, William E. (February 2003). "Catalog of Parameters for Milky Way Globular Clusters: The Database" (text). SEDS. Retrieved on 2007-05-10.
29.Ibata, R.; Chapman, S.; Ferguson, A. M. N.; Lewis, G.; Irwin, M.; Tanvir, N. (2005). "On the accretion origin of a vast extended stellar disk around the Andromeda galaxy". Astrophysical Journal 634 (1): 287–313.doi:10.1086/491727. Retrieved on 2007-05-10.
30."Outer Disk Ring?". SolStation. Retrieved on 2007-05-10.
31.Reid, Mark J. (1993). "The distance to the center of the Galaxy". Annual review of astronomy and astrophysics 31: 345–372. doi:10.1146/annurev.aa.31.090193.002021. Retrieved on 2007-05-10.
32.Eisenhauer, F.; Schödel, R.; Genzel, R.; Ott, T.; Tecza, M.; Abuter, R.; Eckart, A.; Alexander, T. (2003). "A Geometric Determination of the Distance to the Galactic Center". The Astrophysical Journal 597: L121–L124. doi:10.1086/380188. Retrieved on 2007-05-10.
33.Horrobin, M.; Eisenhauer, F.; Tecza, M.; Thatte, N.; Genzel, R.; Abuter, R.; Iserlohe, C.; Schreiber, J.; Schegerer, A.; Lutz, D.; Ott, T.; Schödel, R. (2004). "First results from SPIFFI. I: The Galactic Center" (PDF).Astronomische Nachrichten 325: 120–123. doi:10.1002/asna.200310181. Retrieved on 2007-05-10.
34.Eisenhauer, F. et al. (2005). "SINFONI in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month". The Astrophysical Journal 628 (1): 246–259. doi:10.1086/430667. Retrieved on 2007-08-12.
35.English, Jayanne (1991-07-24). "Exposing the Stuff Between the Stars". Hubble News Desk. Retrieved on 2007-05-10.
36.Gillman, M. and Erenler, H. (2008). "The galactic cycle of extinction". International Journal of Astrobiology 7. doi:10.1017/S1473550408004047. Retrieved on 2008-04-11.
37.Leong, Stacy (2002). "Period of the Sun's Orbit around the Galaxy (Cosmic Year)". The Physics Factbook. Retrieved on 2007-05-10.
38.Garlick, Mark Antony (2002). The Story of the Solar System. Cambridge University. p. 46. ISBN 0521803365.
39.University of California, Berkeley (2006-01-09). Milky Way galaxy is warped and vibrating like a drum. Press release. Retrieved on 2007-10-18.
40.Wong, Janet (April 14, 2000). "Astrophysicist maps out our own galaxy's end". University of Toronto. Retrieved on 2007-01-11.
41.Peter Schneider (2006). Extragalactic Astronomy and Cosmology. Springer. p. 4, Figure 1.4. ISBN 3540331743.
42.Theo Koupelis, Karl F Kuhn (2007). In Quest of the Universe. Jones & Bartlett Publishers. p. 492; Figure 16-13. ISBN 0763743879.
43.Mark H. Jones, Robert J. Lambourne, David John Adams (2004). An Introduction to Galaxies and Cosmology. Cambridge University Press. p. 21; Figure 1.13. ISBN 0521546230.
44.Mark H. Jones, Robert J. Lambourne, David John Adams (2004). An Introduction to Galaxies and Cosmology. Cambridge University Press. p. 298. ISBN 0521546230.
45.Peirani, S (2006). "Mass determination of groups of galaxies: Effects of the cosmological constant". New Astronomy 11: 325. doi:10.1016/j.newast.2005.08.008.
46.Theo Koupelis, Karl F. Kuhn (2007). In Quest of the Universe. Jones & Bartlett Publishers. pp. 492, Figure 16–13. ISBN 0763743879.
47."Online Etymology Dictionary". Retrieved on 2007-01-03.
48.Harutyunyan, Hayk (2003-08-29). "The Armenian name of the Milky Way". ArAS News (Armenian Astronomical Society (ArAS)) 6. Retrieved on 2007-01-05.
49.a b Josep Puig Montada (September 28, 2007). "Ibn Bajja". Stanford Encyclopedia of Philosophy. Retrieved on 2008-07-11.
50.Mohamed, Mohaini (2000), Great Muslim Mathematicians, Penerbit UTM, pp. 49–50, ISBN 9835201579
51.Hamid-Eddine Bouali, Mourad Zghal, Zohra Ben Lakhdar (2005). "Popularisation of Optical Phenomena: Establishing the First Ibn Al-Haytham Workshop on Photography" (PDF). The Education and Training in Optics and Photonics Conference. Retrieved on 2008-07-08.
52.O'Connor, John J.; Robertson, Edmund F., "Abu Rayhan Muhammad ibn Ahmad al-Biruni", MacTutor History of Mathematics archive
53.Livingston, John W. (1971), "Ibn Qayyim al-Jawziyyah: A Fourteenth Century Defense against Astrological Divination and Alchemical Transmutation", Journal of the American Oriental Society 91 (1): 96–103 [99],doi:10.2307/600445
54.J. J. O'Connor, E. F. Robertson (November 2002). "Galileo Galilei". University of St Andrews. Retrieved on 2007-01-08.
55.Evans, J. C. (November 24, 1998). "Our Galaxy". George Mason University. Retrieved on 2007-01-04.
56.Abbey, Lenny. "The Earl of Rosse and the Leviathan of Parsontown". The Compleat Amateur Astronomer. Retrieved on 2007-01-04.
57.Heber D. Curtis (1988). "Novae in Spiral Nebulae and the Island Universe Theory". Publications of the Astronomical Society of the Pacific 100: 6. doi:10.1086/132128.
58.Weaver, Harold F.. "Robert Julius Trumpler". National Academy of Sciences. Retrieved on 2007-01-05.
59.Hubble, E. P. (1929). "A spiral nebula as a stellar system, Messier 31". Astrophysical Journal 69: 103–158. doi:10.1086/143167.
60.Sandage, Allan (1989). "Edwin Hubble, 1889–1953". The Journal of the Royal Astronomical Society of Canada 83 (6). Retrieved on 2007-01-08.
Further reading

Thorsten Dambeck in Sky and Telescope, "Gaia's Mission to the Milky Way", March 2008, p. 36–39.
Read More......

SAHABAT MAYA :

SEARCH LINK :

Label List

VISIT TOROWAMBA BEAUTY BEACH

VISIT TOROWAMBA BEAUTY BEACH
torowamba as one of tourism asset in sape bima

NEW MOTIVATION :

SUNGGUH SANGAT MEMALUKAN JIKA KAPAL BESAR KITA BERBALIK HALUAN KEBELAKANG HANYA UNTUK MENGURUS SAMPAN KECIL MASALAH. AYO !!! MAJU TERUS BRO !
Template by KangNoval & Abdul Munir | blog Blogger Templates